全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

褐藻胶降解菌突变株的选育及降解特性研究
Study on Breeding and Degradation Characteristics of Algin Degrading Mutant Strains

DOI: 10.12677/amb.2025.141005, PP. 34-44

Keywords: 褐藻胶降解菌,诱变选育,降解特性
Alginate Degrading Bacteria
, Mutagenesis Selection, Degradation Characteristics

Full-Text   Cite this paper   Add to My Lib

Abstract:

【目的】通过双重诱变获得高效降解褐藻胶的菌株,并确定该菌株发酵产酶的最优条件,同时研究其化学试剂抗性能力、降解效率,进而解析该菌株的降解特性。【方法】采用紫外和亚硝基胍(NTG)溶液对原始菌株Cobetia sp. cqz5-12进行双重诱变,利用平板初筛(氯化钙透明圈法)和摇瓶复筛(二硝基水杨酸法(DNS法))获得目的突变菌株。采用单因素试验优化其发酵条件,分别利用滤纸片法和氯化钙透明圈法分析化学试剂对菌株生长和降解褐藻胶能力的影响,利用间苯三酚分光光度计法测定菌株发酵液对不同底物的降解效率。【结果】筛选得到一株降解效率显著提高的诱变菌株,并将其命名为Cobeita sp. cqz5-12-M2。该诱变菌株最优发酵条件为pH 6.5、NaCl浓度为0、发酵温度为31℃、发酵时间为96 h,此时该突变株总酶活可以达到59.81 U/mL,比原始菌株的酶活提高50.84%。该突变菌株对褐藻胶的降解效率为42%,比原始菌株提高8.8%。该突变菌株和原始菌株均对多种待测试剂有敏感性。突变使得菌株对苯酚、氯霉素、阿莫西林或氨苄青霉素的敏感性降低,对过氧化氢、乙醇、碘伏等多种化学试剂的敏感性增强。当培养基中存在链霉素、氨苄青霉素或卡那霉素存在时,突变使得菌株对褐藻胶降解能力减弱,当培养基中存在阿莫西林、5%石炭酸、庆大霉素或头孢菌素时,突变使得菌株对褐藻胶降解能力增强。【结论】筛选得到的突变菌株对多种消毒剂和抗生素具有良好抗性,对环境耐受性强,是目前少见的高适应性褐藻胶降解菌。
[Objective] The efficient algin degrading strain was obtained by double mutagenesis, and the optimal conditions for the fermentation enzyme production of the strain were determined. Meanwhile, the chemical reagent resistance and degradation efficiency were studied to analyze the degradation characteristics of the strain. [Methods] The original strain Cobetia sp. cqz5-12 was mutagenic by UV and nitrosoguin (NTG) solution, and the target mutant strain was obtained by plate screening (calcium chloride transparent ring method) and flask rescreening (dinitrosalicylic acid method (DNS method)). Single factor test was used to optimize the fermentation conditions. The effects of chemical reagents on the growth and degradation ability of algin were analyzed by filter paper method and calcium chloride transparent circle method, respectively. The degradation efficiency of different substrates was determined by phloroglucinol spectrophotometer. [Results] A mutagenic strain with significantly improved degradation efficiency was selected and named Cobeita sp. cqz5-12-M2. The optimal fermentation conditions of the mutagen strain were pH 6.5, NaCl concentration 0, fermentation temperature 31?C and fermentation time 96 h. In this case, the total enzyme activity of the mutant strain could reach 59.81 U/mL, which was 50.84% higher than that of the original strain. The degradation efficiency of the mutant strain was 42%, which was 8.8% higher than that of the original strain. Both the mutant strain and the original strain were sensitive to a variety of agents to be tested. The mutation made the strain less sensitive to phenol, chloramphenicol, amoxicillin or ampicillin, and more sensitive to hydrogen peroxide, ethanol, iodophor and other chemical agents. When streptomycin, ampicillin or

References

[1]  Falkeborg, M., Cheong, L., Gianfico, C., Sztukiel, K.M., Kristensen, K., Glasius, M., et al. (2014) Alginate Oligosaccharides: Enzymatic Preparation and Antioxidant Property Evaluation. Food Chemistry, 164, 185-194.
https://doi.org/10.1016/j.foodchem.2014.05.053
[2]  Gao, S., Yin, R., Wang, X., Jiang, H., Liu, X., Lv, W., et al. (2021) Structure Characteristics, Biochemical Properties, and Pharmaceutical Applications of Alginate Lyases. Marine Drugs, 19, Article 628.
https://doi.org/10.3390/md19110628
[3]  Li, Y., Zheng, Y., Zhang, Y., Yang, Y., Wang, P., Imre, B., et al. (2021) Brown Algae Carbohydrates: Structures, Pharmaceutical Properties, and Research Challenges. Marine Drugs, 19, Article 620.
https://doi.org/10.3390/md19110620
[4]  Wang, X., Sun, G., Feng, T., Zhang, J., Huang, X., Wang, T., et al. (2019) Sodium Oligomannate Therapeutically Remodels Gut Microbiota and Suppresses Gut Bacterial Amino Acids-Shaped Neuroinflammation to Inhibit Alzheimer’s Disease Progression. Cell Research, 29, 787-803.
https://doi.org/10.1038/s41422-019-0216-x
[5]  Barzkar, N., Sheng, R., Sohail, M., Jahromi, S.T., Babich, O., Sukhikh, S., et al. (2022) Alginate Lyases from Marine Bacteria: An Enzyme Ocean for Sustainable Future. Molecules, 27, Article 3375.
https://doi.org/10.3390/molecules27113375
[6]  Huang, L., Zhou, J., Li, X., Peng, Q., Lu, H. and Du, Y. (2013) Characterization of a New Alginate Lyase from Newly Isolated Flavobacterium sp. S20. Journal of Industrial Microbiology and Biotechnology, 40, 113-122.
https://doi.org/10.1007/s10295-012-1210-1
[7]  Dharani, S.R., Srinivasan, R., Sarath, R. and Ramya, M. (2020) Recent Progress on Engineering Microbial Alginate Lyases Towards Their Versatile Role in Biotechnological Applications. Folia Microbiologica, 65, 937-954.
https://doi.org/10.1007/s12223-020-00802-8
[8]  Zheng, Y., Wang, Y., Dan, M., Li, Y., Zhao, G. and Wang, D. (2023) Characterization of Degradation Patterns and Enzymatic Properties of a Novel Alkali-Resistant Alginate Lyase Alyrm1 from Rubrivirga Marina. Current Research in Food Science, 6, Article 100414.
https://doi.org/10.1016/j.crfs.2022.100414
[9]  Mohapatra, B.R. (2020) Biocatalytic Characteristics of Chitosan Nanoparticle-Immobilized Alginate Lyase Extracted from a Novel Arthrobacter Species AD-10. Biocatalysis and Agricultural Biotechnology, 23, Article 101458.
https://doi.org/10.1016/j.bcab.2019.101458
[10]  Wang, B., Dong, S., Li, F. and Ma, X. (2021) Structural Basis for the Exolytic Activity of Polysaccharide Lyase Family 6 Alginate Lyase Bcalypl6 from Human Gut Microbe Bacteroides Clarus. Biochemical and Biophysical Research Communications, 547, 111-117.
https://doi.org/10.1016/j.bbrc.2021.02.040
[11]  Hu, F., Cao, S., Li, Q., Zhu, B. and Yao, Z. (2021) Construction and Biochemical Characterization of a Novel Hybrid Alginate Lyase with High Activity by Module Recombination to Prepare Alginate Oligosaccharides. International Journal of Biological Macromolecules, 166, 1272-1279.
https://doi.org/10.1016/j.ijbiomac.2020.11.009
[12]  Chen, C., Cao, S., Zhu, B., Jiang, L. and Yao, Z. (2023) Biochemical Characterization and Elucidation the Degradation Pattern of a New Cold-Adapted and Ca2+ Activated Alginate Lyase for Efficient Preparation of Alginate Oligosaccharides. Enzyme and Microbial Technology, 162, Article 110146.
https://doi.org/10.1016/j.enzmictec.2022.110146
[13]  Xu, F., Cha, Q., Zhang, Y. and Chen, X. (2021) Degradation and Utilization of Alginate by Marine Pseudoalteromonas: A Review. Applied and Environmental Microbiology, 87, e00368-21.
https://doi.org/10.1128/aem.00368-21
[14]  李梦. 褐藻胶降解菌产酶条件优化及酶解产物分析[D]: [硕士学位论文]. 烟台: 烟台大学, 2023.
[15]  孟青, 江波, 周力铖, 等. 一株产褐藻胶裂解酶的需钠弧菌筛选及酶解产物分析[J]. 微生物学通报, 2022, 49(2): 421-436.
[16]  刘思慧. 酿酒酵母突变株UV-6的筛选及甜玉米发酵酒的工艺优化研究[D]: [硕士学位论文]. 长春: 吉林农业大学, 2020.
[17]  李林玉, 张玉婷, 朱芝宜, 等. 功能菌株选育研究进程与展望[J]. 林业科技情报, 2021, 53(2): 1-3.
[18]  薄永恒, 王亮, 杨修镇, 等. 发酵微生物筛选育种技术研究概述[J]. 山东畜牧兽医, 2020, 41(11): 78-79.
[19]  Huang, H., Zheng, Z., Zou, X., Wang, Z., Gao, R., Zhu, J., et al. (2022) Genome Analysis of a Novel Polysaccharide-Degrading Bacterium Paenibacillus Algicola and Determination of Alginate Lyases. Marine Drugs, 20, Article 388.
https://doi.org/10.3390/md20060388
[20]  张书利. 产褐藻胶裂解酶芽孢杆菌的选育及其产酶性质的研究[D]: [硕士学位论文]. 青岛: 中国海洋大学, 2006.
[21]  安宇, 王颖, 佐兆杭, 等. 复合诱变选育新型高产细菌素植物乳杆菌[J]. 中国生物制品学杂志, 2019, 32(3): 265-271.
[22]  王德森, 张祝兰, 任林英, 等. 复合诱变结合抗性突变筛选替考拉宁高产菌株[J]. 工业微生物, 2017, 47(5): 21-24.
[23]  许超, 熊亚茹, 卢明倩, 等. 一株具有褐藻胶降解能力的海洋细菌的筛选鉴定及其多糖利用能力研究[J]. 生物技术通报, 2017, 33(4): 198-204.
[24]  刘海超, 张健, 刘芳, 等. 株褐藻胶降解菌的筛选、鉴定及产酶条件优化[J]. 微生物学杂志, 2021, 41(4): 30-41.
[25]  唐文竹, 何玉宁, 张璐, 等. 响应面法优化褐藻胶降解菌发酵培养基[J]. 微生物学杂志, 2024, 44(2): 79-86.
[26]  张恒. 基于米氏机理的酶催化反应中反应速率常数的计算[J]. 大学化学, 2024, 39(4): 395-400.
[27]  张孟格. 环境中细菌对抗生素耐药与响应的组学分析[D]: [博士学位论文]. 济南: 山东大学, 2024.
[28]  刘睿, 梁颖, 殷豆豆, 等. 降解亚硝酸盐菌株的筛选、条件优化及初步应用[J]. 南方水产科学, 2024, 20(4): 133-143.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133