|
基于深度学习的血细胞检测系统
|
Abstract:
血常规作为医院体检最常见的项目之一,在诊断身体是否健康方面起着至关重要的作用。目前对血细胞进行筛查的常见手段有通过血细胞分析仪和人工镜检进行检测,而这两种方法成本太高且精准度不足。为降低成本以及提高检测精确度,利用深度学习对血细胞进行检测能在一定程度上有效解决这一问题。
As one of the most common items in hospital physical examinations, blood routine plays a crucial role in diagnosing whether the body is healthy. At present, common methods for screening blood cells include using blood cell analyzers and manual microscopy, but these two methods are too expensive and lack accuracy. To reduce costs and improve detection accuracy, using deep learning to detect blood cells can effectively solve this problem to a certain extent.
[1] | 蔡润秋, 巫琦, 马靖武, 等. 基于阈值图像分割结合深度学习的血细胞识别算法研究[J]. 中国医学装备, 2024, 21(7): 39-42+53. |
[2] | 贺晓松, 胡川丽, 赵江. 基于深度学习的非小细胞肺癌检测[J]. 临床放射学杂志, 2025, 44(2): 265-273. |
[3] | 王海宝, 刘红岩, 魏志, 等. 基于深度学习的骨髓细胞图像分类研究[J]. 基因组学与应用生物学, 2024, 43(Z2): 1872-1882. |
[4] | Toia, G.V. (2022) Editorial Comment: Deep Learning Image Reconstruction—Do Better Images Make a Better Radiologist? American Journal of Roentgenology, 220. https://doi.org/10.2214/AJR.22.28658 |
[5] | Rubinstein, J.C., Pour, A.F., Zhou, J., Sheridan, T.B., White, B.S. and Chuang, J.H. (2022) Deep Learning Image Analysis Quantifies Tumor Heterogeneity and Identifies Microsatellite Instability in Colon Cancer. Journal of Surgical Oncology, 127, 426-433. https://doi.org/10.1002/jso.27118 |