全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

牙髓炎中表观遗传调控细胞凋亡的研究进展
Research Progress in Epigenetic Regulation of Apoptosis in Pulpitis

DOI: 10.12677/hjbm.2025.152036, PP. 304-310

Keywords: 牙髓炎,表观遗传调控,细胞凋亡
Pulpitis
, Epigenetic Regulation, Apoptosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

牙髓炎是发生于牙髓组织的炎性病变,持续发展会导致根尖周炎及骨组织缺损,严重破坏牙齿功能,影响患者的口腔健康及日常生活,造成时间、经济损失。细胞凋亡是基因控制的一种程序性细胞死亡,其表观遗传调节主要包括非编码RNA (non-coding RNA, ncRNA)转录调控、DNA甲基化和组蛋白修饰等。本文通过对表观遗传在牙髓炎进展中对细胞凋亡的调控机制和潜在作用作一综述,旨在丰富牙髓炎症的机制背景,为研究牙髓炎症的防治提供参考。
Pulpitis is an inflammatory disease that occurs in the pulp tissue. Continued development can lead to periapical periodontitis and bone tissue defect, seriously damage dental function, affect patients’ oral health and daily life, and cause time and economic losses. Apoptosis is a programmed cell death controlled by genes. Its epigenetic regulation mainly includes non-coding RNA (ncRNA) transcriptional regulation, DNA methylation and histone modification. This article reviews the regulatory mechanism and potential role of epigenetic on apoptosis in the progression of pulpitis, aiming to enrich the mechanism background of pulpitis and provide reference for the study of pulp inflammation prevention and treatment.

References

[1]  Gronthos, S., Brahim, J., Li, W., Fisher, L.W., Cherman, N., Boyde, A., et al. (2002) Stem Cell Properties of Human Dental Pulp Stem Cells. Journal of Dental Research, 81, 531-535.
https://doi.org/10.1177/154405910208100806

[2]  Kerr, J.F.R., Wyllie, A.H. and Currie, A.R. (1972) Apoptosis: A Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics. British Journal of Cancer, 26, 239-257.
https://doi.org/10.1038/bjc.1972.33

[3]  Galluzzi, L., Maiuri, M.C., Vitale, I., Zischka, H., Castedo, M., Zitvogel, L., et al. (2007) Cell Death Modalities: Classification and Pathophysiological Implications. Cell Death & Differentiation, 14, 1237-1243.
https://doi.org/10.1038/sj.cdd.4402148

[4]  Galluzzi, L., Vitale, I., Aaronson, S.A., Abrams, J.M., Adam, D., Agostinis, P., et al. (2018) Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, 25, 486-541.
https://doi.org/10.1038/s41418-017-0012-4

[5]  Chai, J. and Shi, Y. (2014) Apoptosome and Inflammasome: Conserved Machineries for Caspase Activation. National Science Review, 1, 101-118.
https://doi.org/10.1093/nsr/nwt025

[6]  Atlasi, Y. and Stunnenberg, H.G. (2017) The Interplay of Epigenetic Marks during Stem Cell Differentiation and Development. Nature Reviews Genetics, 18, 643-658.
https://doi.org/10.1038/nrg.2017.57

[7]  Barrett, S.P., Wang, P.L. and Salzman, J. (2015) Circular RNA Biogenesis Can Proceed through an Exon-Containing Lariat Precursor. eLife, 4, e07540.
https://doi.org/10.7554/elife.07540

[8]  Liang, C., Li, W., Huang, Q. and Wen, Q. (2023) Circfkbp5 Suppresses Apoptosis and Inflammation and Promotes Osteogenic Differentiation. International Dental Journal, 73, 377-386.
https://doi.org/10.1016/j.identj.2022.08.001

[9]  Liang, C., Wu, W., He, X., Xue, F. and Feng, D. (2023) Circ_0138960 Knockdown Alleviates Lipopolysaccharide-Induced Inflammatory Response and Injury in Human Dental Pulp Cells by Targeting Mir-545-5p/myd88 Axis in Pulpitis. Journal of Dental Sciences, 18, 191-202.
https://doi.org/10.1016/j.jds.2022.06.012

[10]  Tay, Y., Rinn, J. and Pandolfi, P.P. (2014) The Multilayered Complexity of Cerna Crosstalk and Competition. Nature, 505, 344-352.
https://doi.org/10.1038/nature12986

[11]  Wang, X., Sun, H., Hu, Z., Mei, P., Wu, Y. and Zhu, M. (2021) RETRACTED: NUTM2A-AS1 Silencing Alleviates Lps-Induced Apoptosis and Inflammation in Dental Pulp Cells through Targeting let-7c-5p/HMGB1 Axis. International Immunopharmacology, 96, Article ID: 107497.
https://doi.org/10.1016/j.intimp.2021.107497

[12]  Dai, Y., Xuan, G. and Yin, M. (2023) DUXAP8 Promotes Lps-Induced Cell Injury in Pulpitis by Regulating miR-18b-5p/HIF3A. International Dental Journal, 73, 636-644.
https://doi.org/10.1016/j.identj.2022.11.011

[13]  Lu, J., Xu, F. and Lu, H. (2020) LncRNA PVT1 Regulates Ferroptosis through miR-214-Mediated TFR1 and P53. Life Sciences, 260, Article ID: 118305.
https://doi.org/10.1016/j.lfs.2020.118305

[14]  Xia, L., Wang, J., Qi, Y., et al. (2022) Long Non-Coding RNA PVT1 Is Involved in the Pathological Mechanism of Pulpitis by Regulating miR-128-3p. Oral Health and Preventive Dentistry, 20, 263-270.
[15]  Li, X. and Ren, H. (2020) Long Noncoding RNA PVT1 Promotes Tumor Cell Proliferation, Invasion, Migration and Inhibits Apoptosis in Oral Squamous Cell Carcinoma by Regulating miR‑150‑5p/GLUT-1. Oncology Reports, 44, 1524-38.
https://doi.org/10.3892/or.2020.7706

[16]  Niu, Y., Zhao, X., Wu, Y., Li, M., Wang, X. and Yang, Y. (2012) N6-Methyl-Adenosine (m6A) in RNA: An Old Modification with a Novel Epigenetic Function. Genomics, Proteomics & Bioinformatics, 11, 8-17.
https://doi.org/10.1016/j.gpb.2012.12.002

[17]  Luo, H., Liu, W., Zhang, Y., Yang, Y., Jiang, X., Wu, S., et al. (2021) METTL3-Mediated m6A Modification Regulates Cell Cycle Progression of Dental Pulp Stem Cells. Stem Cell Research & Therapy, 12, 159.
https://doi.org/10.1186/s13287-021-02223-x

[18]  Feng, Z., Li, Q., Meng, R., Yi, B. and Xu, Q. (2018) METTL3 Regulates Alternative Splicing of MyD88 upon the Lipopolysaccharide‐Induced Inflammatory Response in Human Dental Pulp Cells. Journal of Cellular and Molecular Medicine, 22, 2558-2568.
https://doi.org/10.1111/jcmm.13491

[19]  Sheng, R., Wang, Y., Wu, Y., Wang, J., Zhang, S., Li, Q., et al. (2020) METTL3-Mediated m6A mRNA Methylation Modulates Tooth Root Formation by Affecting NFIC Translation. Journal of Bone and Mineral Research, 36, 412-423.
https://doi.org/10.1002/jbmr.4180

[20]  Khan, N., Jeffers, M., Kumar, S., Hackett, C., Boldog, F., Khramtsov, N., et al. (2007) Determination of the Class and Isoform Selectivity of Small-Molecule Histone Deacetylase Inhibitors. Biochemical Journal, 409, 581-589.
https://doi.org/10.1042/bj20070779

[21]  Luo, Z., Wang, Z., He, X., Liu, N., Liu, B., Sun, L., et al. (2017) Effects of Histone Deacetylase Inhibitors on Regenerative Cell Responses in Human Dental Pulp Cells. International Endodontic Journal, 51, 767-778.
https://doi.org/10.1111/iej.12779

[22]  Michan, S. and Sinclair, D. (2007) Sirtuins in Mammals: Insights into Their Biological Function. Biochemical Journal, 404, 1-13.
https://doi.org/10.1042/bj20070140

[23]  Zhang, L., Bai, L., Ren, Q., Sun, G. and Si, Y. (2018) Protective Effects of SIRT6 against Lipopolysaccharide (LPS) Are Mediated by Deacetylation of Ku70. Molecular Immunology, 101, 312-318.
https://doi.org/10.1016/j.molimm.2018.07.009

[24]  Hui, T., A, P., Zhao, Y., Wang, C., Gao, B., Zhang, P., et al. (2014) EZH2, a Potential Regulator of Dental Pulp Inflammation and Regeneration. Journal of Endodontics, 40, 1132-1138.
https://doi.org/10.1016/j.joen.2014.01.031

[25]  Yang, D., Okamura, H., Teramachi, J. and Haneji, T. (2016) Histone Demethylase Jmjd3 Regulates Osteoblast Apoptosis through Targeting Anti-Apoptotic Protein Bcl-2 and Pro-Apoptotic Protein Bim. Biochimica et Biophysica Acta (BBA) Molecular Cell Research, 1863, 650-659.
https://doi.org/10.1016/j.bbamcr.2016.01.006

[26]  Wang, R., Luo, H., Yang, D., Yu, B., Guo, J., Shao, L., et al. (2022) Osteoblast Jmjd3 Regulates Osteoclastogenesis via EphB4 and RANKL Signalling. Oral Diseases, 29, 1613-1621.
https://doi.org/10.1111/odi.14160

[27]  Sun, Z., Yu, S., Chen, S., Liu, H. and Chen, Z. (2019) SP1 Regulates KLF4 via SP1 Binding Motif Governed by DNA Methylation during Odontoblastic Differentiation of Human Dental Pulp Cells. Journal of Cellular Biochemistry, 120, 14688-14699.
https://doi.org/10.1002/jcb.28730

[28]  Zhang, S., Barros, S.P., Moretti, A.J., Yu, N., Zhou, J., Preisser, J.S., et al. (2013) Epigenetic Regulation of tnfa Expression in Periodontal Disease. Journal of Periodontology, 84, 1606-1616.
https://doi.org/10.1902/jop.2013.120294

[29]  Wang, X., Sun, H., Liu, H., Ma, L., Jiang, C., Liao, H., et al. (2019) MicroRNA‐181b‐5p Modulates Tumor Necrosis Factor‐α‐Induced Inflammatory Responses by Targeting Interleukin‐6 in Cementoblasts. Journal of Cellular Physiology, 234, 22719-22730.
https://doi.org/10.1002/jcp.28837

[30]  Wang, L., Li, Y., Hong, F. and Ning, H. (2022) Circ_0062491 Alleviates Lps-Induced Apoptosis and Inflammation in Periodontitis by Regulating Mir-498/socs6 Axis. Innate Immunity, 28, 174-184.
https://doi.org/10.1177/17534259211072302

[31]  Deng, W., Wang, X., Zhang, J. and Zhao, S. (2022) Circ_0138959/mir-495-3p/traf6 Axis Regulates Proliferation, Wound Healing and Osteoblastic Differentiation of Periodontal Ligament Cells in Periodontitis. Journal of Dental Sciences, 17, 1125-1134.
https://doi.org/10.1016/j.jds.2022.01.010

[32]  Li, S., Xu, H., Li, Y. and Li, R. (2022) Circ_0138960 Contributes to Lipopolysaccharide‐Induced Periodontal Ligament Cell Dysfunction. Immunity, Inflammation and Disease, 10, e732.
https://doi.org/10.1002/iid3.732

[33]  Cheng, L., Fan, Y., Cheng, J., Wang, J., Liu, Q. and Feng, Z. (2022) Long Non-Coding RNA ZFY-AS1 Represses Periodontitis Tissue Inflammation and Oxidative Damage via Modulating microRNA-129-5p/DEAD-Box Helicase 3 X-Linked Axis. Bioengineered, 13, 12691-12705.
https://doi.org/10.1080/21655979.2021.2019876

[34]  Zhou, M., Hu, H., Han, Y., Li, J., Zhang, Y., Tang, S., et al. (2020) Long Non‐Coding RNA 01126 Promotes Periodontitis Pathogenesis of Human Periodontal Ligament Cells via miR-518a-5p/HIF-1α/MAPK Pathway. Cell Proliferation, 54, e12957.
https://doi.org/10.1111/cpr.12957

[35]  Liang, L., Chen, L., Liu, G., Jiang, L., Que, L., Chen, J., et al. (2022) Thalidomide Attenuates Oral Epithelial Cell Apoptosis and Pro-Inflammatory Cytokines Secretion Induced by Radiotherapy via the miR-9-3p/NFATC2/NF-κB Axis. Biochemical and Biophysical Research Communications, 603, 102-108.
https://doi.org/10.1016/j.bbrc.2022.03.030

[36]  Lian, H., Liu, W., Liu, Q., Jin, H., Sun, Y., Li, J., et al. (2010) A Laboratory-Attenuated Vesicular Stomatitis Virus Induces Apoptosis and Alters the Cellular MicroRNA Expression Profile in BHK Cells. Archives of Virology, 155, 1643-1653.
https://doi.org/10.1007/s00705-010-0749-2

[37]  Fukushima, K.A., Marques, M.M., Tedesco, T.K., Carvalho, G.L., Gonçalves, F., Caballero-Flores, H., et al. (2019) Screening of Hydrogel-Based Scaffolds for Dental Pulp Regeneration—A Systematic Review. Archives of Oral Biology, 98, 182-194.
https://doi.org/10.1016/j.archoralbio.2018.11.023

[38]  Ganesh, V., Seol, D., Gomez-Contreras, P.C., Keen, H.L., Shin, K. and Martin, J.A. (2022) Exosome-Based Cell Homing and Angiogenic Differentiation for Dental Pulp Regeneration. International Journal of Molecular Sciences, 24, Article No. 466.
https://doi.org/10.3390/ijms24010466

[39]  Sui, B., Chen, C., Kou, X., Li, B., Xuan, K., Shi, S., et al. (2018) Pulp Stem Cell-Mediated Functional Pulp Regeneration. Journal of Dental Research, 98, 27-35.
https://doi.org/10.1177/0022034518808754

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133