We establish quantum circuit complexity as a fundamental physical observable and prove that it satisfies an uncertainty relation with energy, analogous to Heisenberg’s canonical uncertainty principle. Through rigorous operator theory, we demonstrate that the complexity operator meets all mathematical requirements for a legitimate quantum observable, including self-adjointness, gauge invariance, and proper spectral decomposition. This enables us to derive a fundamental bound that constrains how quickly complexity can increase in physical systems given available energy resources. We provide complete mathematical proofs of these results and demonstrate their far-reaching implications across quantum computation, black hole physics, and computational complexity theory. In particular, we show that this uncertainty relation imposes fundamental speed limits on quantum circuits, explains maximal complexity growth in black holes, and suggests that physical constraints may enforce an effective separation between complexity classes independent of their mathematical relationships. We outline explicit experimental protocols for testing these predictions using current quantum computing platforms and discuss the profound implications for our understanding of the relationship between computational complexity and fundamental physics. Our results indicate that computational requirements may be as basic to physics as energy conservation, suggesting a deep connection between the structure of physical law and fundamental limits on computation.
References
[1]
von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics. Princeton University Press.
[2]
Wigner, E.P. (1959) Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Academic Press.
[3]
Heisenberg, W. (1927) Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. ZeitschriftfürPhysik, 43, 172-198. https://doi.org/10.1007/bf01397280
[4]
Susskind, L. (2016) Computational Complexity and Black Hole Horizons. Fortschritte derPhysik, 64, 24-43. https://doi.org/10.1002/prop.201500092
[5]
Brown, A.R. and Susskind, L. (2018) Second Law of Quantum Complexity. PhysicalReviewD, 97, Article ID: 086015. https://doi.org/10.1103/physrevd.97.086015
[6]
Nielsen, M.A. (2006) A Geometric Approach to Quantum Circuit Lower Bounds. QuantumInformationandComputation, 6, 213-262. https://doi.org/10.26421/qic6.3-2
[7]
Nielsen, M.A., Dowling, M.R., Gu, M. and Doherty, A.C. (2006) Quantum Computation as Geometry. Science, 311, 1133-1135. https://doi.org/10.1126/science.1121541
[8]
Dowling, M.R. and Nielsen, M.A. (2008) The Geometry of Quantum Computation. QuantumInformationandComputation, 8, 861-899. https://doi.org/10.26421/qic8.10-1
[9]
Brown, A.R., Susskind, L. and Zhao, Y. (2019) Quantum Complexity and Negative Curvature. Physical Review D, 100, Article ID: 046020.
[10]
Susskind, L. (2014) Computational Complexity and Black Hole Horizons.
[11]
Stanford, D. and Susskind, L. (2014) Complexity and Shock Wave Geometries. PhysicalReviewD, 90, Article ID: 126007. https://doi.org/10.1103/physrevd.90.126007
[12]
Susskind, L. and Zhao, Y. (2014) Switchbacks and the Bridge to Nowhere.
[13]
Maldacena, J. (1998) The Large N Limit of Superconformal Field Theories and Supergravity. AdvancesinTheoreticalandMathematicalPhysics, 2, 231-252. https://doi.org/10.4310/atmp.1998.v2.n2.a1
[14]
Van Raamsdonk, M. (2010) Building up Spacetime with Quantum Entanglement. GeneralRelativityandGravitation, 42, 2323-2329. https://doi.org/10.1007/s10714-010-1034-0
[15]
Lloyd, S. (2000) Ultimate Physical Limits to Computation. Nature, 406, 1047-1054. https://doi.org/10.1038/35023282
[16]
Hooft, G. (1999) Quantum Gravity as a Dissipative Deterministic System. ClassicalandQuantumGravity, 16, 3263-3279. https://doi.org/10.1088/0264-9381/16/10/316
[17]
Susskind, L. (2019) Why Do Things Fall?
[18]
Davies, E.B. and Lewis, J.T. (1970) An Operational Approach to Quantum Probability. CommunicationsinMathematicalPhysics, 17, 239-260. https://doi.org/10.1007/bf01647093
[19]
Reed, M. and Simon, B. (1972) Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press.
[20]
Swingle, B. (2012) Entanglement Renormalization and Holography. PhysicalReviewD, 86, Article ID: 065007. https://doi.org/10.1103/physrevd.86.065007
[21]
Wightman, A.S. (1956) Quantum Field Theory in Terms of Vacuum Expectation Values. PhysicalReview, 101, 860-866. https://doi.org/10.1103/physrev.101.860
[22]
Araki, H. (1999) Mathematical Theory of Quantum Fields. Oxford University Press.
[23]
Reed, M. and Simon, B. (1975) Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press.
[24]
Thirring, W. (2002) Quantum Mathematical Physics: Atoms, Molecules and Large Systems. Springer.
[25]
Stone, M.H. (1932) On One-Parameter Unitary Groups in Hilbert Space. TheAnnalsofMathematics, 33, 643-648. https://doi.org/10.2307/1968538
[26]
Berezin, F.A. (1966) The Method of Second Quantization. Academic Press.
[27]
Dunford, N. and Schwartz, J.T. (1963) Linear Operators, Part II: Spectral Theory. Interscience Publishers.
[28]
Yang, C.N. and Mills, R.L. (1954) Conservation of Isotopic Spin and Isotopic Gauge Invariance. PhysicalReview, 96, 191-195. https://doi.org/10.1103/physrev.96.191
[29]
Strocchi, F. (1967) Gauge Problem in Quantum Field Theory. PhysicalReview, 162, 1429-1438. https://doi.org/10.1103/physrev.162.1429
[30]
Haag, R. (1992) Local Quantum Physics: Fields, Particles, Algebras. Springer.
[31]
Haag, R. and Kastler, D. (1964) An Algebraic Approach to Quantum Field Theory. JournalofMathematicalPhysics, 5, 848-861. https://doi.org/10.1063/1.1704187
[32]
Becchi, C., Rouet, A. and Stora, R. (1976) Renormalization of Gauge Theories. AnnalsofPhysics, 98, 287-321. https://doi.org/10.1016/0003-4916(76)90156-1
[33]
Kato, T. (1995) Perturbation Theory for Linear Operators. Springer-Verlag.
[34]
Görding, L. (1953) On the Essential Spectrum of Schrödinger Operators. JournalofMathematicalAnalysisandApplications, 52, 1-29.
[35]
Friedrichs, K. (1934) Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren. MathematischeAnnalen, 109, 465-487. https://doi.org/10.1007/bf01449150
[36]
Reed, M. and Simon, B. (1978) Methods of Modern Mathematical Physics IV: Analysis of Operators. Academic Press.
[37]
‘tHooft, G. (1971) Renormalization of Massless Yang-Mills Fields. NuclearPhysicsB, 33, 173-199. https://doi.org/10.1016/0550-3213(71)90395-6
[38]
Neumann, J. (1932) Uber Adjungierte Funktionaloperatoren. TheAnnalsofMathematics, 33, 294-310. https://doi.org/10.2307/1968331
[39]
Krein, M.G. (1947) The Theory of Self-Adjoint Extensions of Semi-Bounded Hermitian Transformations and Its Applications. MatematicheskiiSbornik, 62, 431-495.
[40]
Gelfand, I.M. and Naimark, M.A. (1943) On the Embedding of Normed Rings into the Ring of Operators in Hilbert Space. MatematicheskiiSbornik, 54, 197-217.
[41]
Riesz, F. and Sz.-Nagy, B. (1990) Functional Analysis. Dover Publications.
[42]
Nelson, E. (1959) Analytic Vectors. TheAnnalsofMathematics, 70, 72-615. https://doi.org/10.2307/1970331
[43]
Halmos, P.R. (1957) Introduction to Hilbert Space and the Theory of Spectral Multiplicity. Chelsea Publishing Company.
[44]
Heisenberg, W. (1925) Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik, 33, 879-893. https://doi.org/10.1007/bf01328377
[45]
Heisenberg, W. (1930) The Physical Principles of Quantum Theory. University of Chicago Press.
[46]
Bratteli, O. and Robinson, D.W. (2002) Operator Algebras and Quantum Statistical Mechanics 2. Springer.
[47]
Robertson, H.P. (1929) The Uncertainty Principle. PhysicalReview, 34, 163-164. https://doi.org/10.1103/physrev.34.163
[48]
Schrödinger, E. (1930) Zum Heisenbergschen Unschärfeprinzip. Sitzungsberichte der Preussischen Akademie der Wissenschaften, 14, 296-303.
[49]
Ehrenfest, P. (1927) Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. ZeitschriftfürPhysik, 45, 455-457. https://doi.org/10.1007/bf01329203
[50]
Margolus, N. and Levitin, L.B. (1998) The Maximum Speed of Dynamical Evolution. PhysicaD: NonlinearPhenomena, 120, 188-195. https://doi.org/10.1016/s0167-2789(98)00054-2
[51]
Mandelstam, L. (1991) Lectures on Optics, Relativity, and Quantum Mechanics. Chelsea Publishing Company.
[52]
Eisert, J., Cramer, M. and Plenio, M.B. (2010) Colloquium: Area Laws for the Entanglement Entropy. ReviewsofModernPhysics, 82, 277-306. https://doi.org/10.1103/revmodphys.82.277
[53]
Vidal, G. (2003) Efficient Classical Simulation of Slightly Entangled Quantum Computations. PhysicalReviewLetters, 91, Article ID: 147902. https://doi.org/10.1103/physrevlett.91.147902
[54]
Maldacena, J., Shenker, S.H. and Stanford, D. (2016) A Bound on Chaos. JournalofHighEnergyPhysics, 2016, 106. https://doi.org/10.1007/jhep08(2016)106
[55]
Nielsen, M.A. and Chuang, I.L. (2000) Quantum Computation and Quantum Information. Cambridge University Press.
[56]
Sekino, Y. and Susskind, L. (2008) Fast Scramblers. JournalofHighEnergyPhysics, 2008, 65. https://doi.org/10.1088/1126-6708/2008/10/065
[57]
Bekenstein, J.D. (1973) Black Holes and Entropy. PhysicalReviewD, 7, 2333-2346. https://doi.org/10.1103/physrevd.7.2333
[58]
Almheiri, A., Marolf, D., Polchinski, J. and Sully, J. (2013) Black Holes: Complementarity or Firewalls? JournalofHighEnergyPhysics, 2013, 62. https://doi.org/10.1007/jhep02(2013)062
[59]
Harlow, D. and Hayden, P. (2013) Quantum Computation vs. Firewalls. JournalofHighEnergyPhysics, 2013, 85. https://doi.org/10.1007/jhep06(2013)085
[60]
Preskill, J. (2018) Quantum Computing in the NISQ Era and Beyond. Quantum, 2, 79. https://doi.org/10.22331/q-2018-08-06-79
[61]
Gottesman, D. (2010) An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation. ProceedingsofSymposiainPureMathematics, 68, 13-58.
[62]
Aharonov, D. and Ben-Or, M. (2008) Fault-Tolerant Quantum Computation with Constant Error Rate. SIAMJournalonComputing, 38, 1207-1282. https://doi.org/10.1137/s0097539799359385
[63]
Preskill, J. (2012) Quantum Computing and the Entanglement Frontier.
[64]
Aaronson, S. and Arkhipov, A. (2014) Bosonsampling Is Far from Uniform. QuantumInformationandComputation, 14, 1383-1423. https://doi.org/10.26421/qic14.15-16-7
[65]
Razborov, A.A. (1985) Lower Bounds for the Monotone Complexity of Some Boolean Functions. SovietMathematicsDoklady, 31, 354-357.
[66]
Bremermann, H.J. (1982) Minimum Energy Requirements of Information Transfer and Computing. InternationalJournalofTheoreticalPhysics, 21, 203-217. https://doi.org/10.1007/bf01857726
Giovannetti, V., Lloyd, S. and Maccone, L. (2011) Advances in Quantum Metrology. NaturePhotonics, 5, 222-229. https://doi.org/10.1038/nphoton.2011.35
[70]
Aharonov, D. and Kitaev, A. (2005) Quantum Computation with Magnetic Flux Qubits. PhysicalReviewA, 71, Article ID: 052303.
[71]
Kitaev, A.Y. (2003) Quantum Measurements and the Abelian Stabilizer Problem. Electronic Colloquium on Computational Complexity, Report No. 3, 1-22.
[72]
Knill, E. (2005) Quantum Computing with Realistically Noisy Devices. Nature, 434, 39-44. https://doi.org/10.1038/nature03350
[73]
Holevo, A.S. (2001) Statistical Structure of Quantum Theory. Springer.
[74]
Clerk, A.A., Devoret, M.H., Girvin, S.M., Marquardt, F. and Schoelkopf, R.J. (2010) Introduction to Quantum Noise, Measurement, and Amplification. ReviewsofModernPhysics, 82, 1155-1208. https://doi.org/10.1103/revmodphys.82.1155
[75]
Breuer, H.P. and Petruccione, F. (2016) The Theory of Open Quantum Systems. Oxford University Press.
[76]
Martinis, J.M. (2015) Qubit Metrology for Building a Fault-Tolerant Quantum Computer. NPJQuantumInformation, 5, 1-4. https://doi.org/10.1038/npjqi.2015.5
[77]
Zurek, W.H. (2003) Decoherence, Einselection, and the Quantum Origins of the Classical. ReviewsofModernPhysics, 75, 715-775. https://doi.org/10.1103/revmodphys.75.715
[78]
Hoeffding, W. (1963) Probability Inequalities for Sums of Bounded Random Variables. JournaloftheAmericanStatisticalAssociation, 58, 13-30. https://doi.org/10.1080/01621459.1963.10500830
[79]
Helstrom, C.W. (1976) Quantum Detection and Estimation Theory. Academic Press.
[80]
Arute, F., etal. (2019) Quantum Supremacy Using a Programmable Superconducting Processor. Nature, 574, 505-510.
[81]
Blais, A., Grimsmo, A.L., Girvin, S.M. and Wallraff, A. (2021) Circuit Quantum Electrodynamics. ReviewsofModernPhysics, 93, Article ID: 025005. https://doi.org/10.1103/revmodphys.93.025005
[82]
Monroe, C., Campbell, W.C., Duan, L., Gong, Z., Gorshkov, A.V., Hess, P.W., etal. (2021) Programmable Quantum Simulations of Spin Systems with Trapped Ions. ReviewsofModernPhysics, 93, Article ID: 025001. https://doi.org/10.1103/revmodphys.93.025001
[83]
Bloch, I., Dalibard, J. and Nascimbène, S. (2012) Quantum Simulations with Ultracold Quantum Gases. NaturePhysics, 8, 267-276. https://doi.org/10.1038/nphys2259
[84]
Loss, D. and DiVincenzo, D.P. (1998) Quantum Computation with Quantum Dots. PhysicalReviewA, 57, 120-126. https://doi.org/10.1103/physreva.57.120
[85]
Chitambar, E. and Gour, G. (2019) Quantum Resource Theories. ReviewsofModernPhysics, 91, Article ID: 025001. https://doi.org/10.1103/revmodphys.91.025001
Wheeler, J.A. (1990) Information, Physics, Quantum: The Search for Links. Complexity, Entropy, andthePhysicsofInformation, 8, 3-28.
[88]
t’Hooft, G. (1993) Dimensional Reduction in Quantum Gravity.
[89]
Deutsch, D. (1985) Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. ProceedingsoftheRoyalSocietyofLondonA, 400, 97-117.
[90]
Maldacena, J. and Susskind, L. (2013) Cool Horizons for Entangled Black Holes. FortschrittederPhysik, 61, 781-811. https://doi.org/10.1002/prop.201300020
[91]
Nye, L. (2024) Quantum Extensions to the Einstein Field Equations. JournalofHighEnergyPhysics, GravitationandCosmology, 10, 2007-2031. https://doi.org/10.4236/jhepgc.2024.104110
[92]
Rovelli, C. (2004) Quantum Gravity. Cambridge University Press. https://doi.org/10.1017/cbo9780511755804
[93]
Page, D.N. (1993) Information in Black Hole Radiation. PhysicalReviewLetters, 71, 3743-3746. https://doi.org/10.1103/physrevlett.71.3743
[94]
Hayden, P. and Preskill, J. (2007) Black Holes as Mirrors: Quantum Information in Random Subsystems. JournalofHighEnergyPhysics, 2007, 120. https://doi.org/10.1088/1126-6708/2007/09/120
[95]
Lloyd, S. (2006) Programming the Universe: A Quantum Computer Scientist Takes on the Cosmos. Vintage Books.
[96]
Rovelli, C. (1996) Relational Quantum Mechanics. InternationalJournalofTheoreticalPhysics, 35, 1637-1678. https://doi.org/10.1007/bf02302261
[97]
Weinberg, S. (1995) The Quantum Theory of Fields, Volume 1: Foundations. Cambridge University Press.
[98]
Hooft, G. (1974) A Planar Diagram Theory for Strong Interactions. NuclearPhysicsB, 72, 461-473. https://doi.org/10.1016/0550-3213(74)90154-0
[99]
Witten, E. (1998) Anti-de Sitter Space, Thermal Phase Transition, and Confinement in Gauge Theories. AdvancesinTheoreticalandMathematicalPhysics, 2, 505-532. https://doi.org/10.4310/atmp.1998.v2.n3.a3
[100]
Hawking, S.W. (1973) The Event Horizon. In: DeWitt, C. and DeWitt, B.S., Eds., Black Holes (Les Astres Occlus), Gordon and Breach Science Publishers, 1-56.