全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Fundamental Energy-Complexity Uncertainty Relation

DOI: 10.4236/jqis.2025.151003, PP. 16-58

Keywords: Quantum Complexity, Uncertainty Relations, Quantum Circuit Theory, Black Hole Information, Quantum Gravity

Full-Text   Cite this paper   Add to My Lib

Abstract:

We establish quantum circuit complexity as a fundamental physical observable and prove that it satisfies an uncertainty relation with energy, analogous to Heisenberg’s canonical uncertainty principle. Through rigorous operator theory, we demonstrate that the complexity operator meets all mathematical requirements for a legitimate quantum observable, including self-adjointness, gauge invariance, and proper spectral decomposition. This enables us to derive a fundamental bound that constrains how quickly complexity can increase in physical systems given available energy resources. We provide complete mathematical proofs of these results and demonstrate their far-reaching implications across quantum computation, black hole physics, and computational complexity theory. In particular, we show that this uncertainty relation imposes fundamental speed limits on quantum circuits, explains maximal complexity growth in black holes, and suggests that physical constraints may enforce an effective separation between complexity classes independent of their mathematical relationships. We outline explicit experimental protocols for testing these predictions using current quantum computing platforms and discuss the profound implications for our understanding of the relationship between computational complexity and fundamental physics. Our results indicate that computational requirements may be as basic to physics as energy conservation, suggesting a deep connection between the structure of physical law and fundamental limits on computation.

References

[1]  von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics. Princeton University Press.
[2]  Wigner, E.P. (1959) Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Academic Press.
[3]  Heisenberg, W. (1927) Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik, 43, 172-198.
https://doi.org/10.1007/bf01397280
[4]  Susskind, L. (2016) Computational Complexity and Black Hole Horizons. Fortschritte der Physik, 64, 24-43.
https://doi.org/10.1002/prop.201500092
[5]  Brown, A.R. and Susskind, L. (2018) Second Law of Quantum Complexity. Physical Review D, 97, Article ID: 086015.
https://doi.org/10.1103/physrevd.97.086015
[6]  Nielsen, M.A. (2006) A Geometric Approach to Quantum Circuit Lower Bounds. Quantum Information and Computation, 6, 213-262.
https://doi.org/10.26421/qic6.3-2
[7]  Nielsen, M.A., Dowling, M.R., Gu, M. and Doherty, A.C. (2006) Quantum Computation as Geometry. Science, 311, 1133-1135.
https://doi.org/10.1126/science.1121541
[8]  Dowling, M.R. and Nielsen, M.A. (2008) The Geometry of Quantum Computation. Quantum Information and Computation, 8, 861-899.
https://doi.org/10.26421/qic8.10-1
[9]  Brown, A.R., Susskind, L. and Zhao, Y. (2019) Quantum Complexity and Negative Curvature. Physical Review D, 100, Article ID: 046020.
[10]  Susskind, L. (2014) Computational Complexity and Black Hole Horizons.
[11]  Stanford, D. and Susskind, L. (2014) Complexity and Shock Wave Geometries. Physical Review D, 90, Article ID: 126007.
https://doi.org/10.1103/physrevd.90.126007
[12]  Susskind, L. and Zhao, Y. (2014) Switchbacks and the Bridge to Nowhere.
[13]  Maldacena, J. (1998) The Large N Limit of Superconformal Field Theories and Supergravity. Advances in Theoretical and Mathematical Physics, 2, 231-252.
https://doi.org/10.4310/atmp.1998.v2.n2.a1
[14]  Van Raamsdonk, M. (2010) Building up Spacetime with Quantum Entanglement. General Relativity and Gravitation, 42, 2323-2329.
https://doi.org/10.1007/s10714-010-1034-0
[15]  Lloyd, S. (2000) Ultimate Physical Limits to Computation. Nature, 406, 1047-1054.
https://doi.org/10.1038/35023282
[16]  Hooft, G. (1999) Quantum Gravity as a Dissipative Deterministic System. Classical and Quantum Gravity, 16, 3263-3279.
https://doi.org/10.1088/0264-9381/16/10/316
[17]  Susskind, L. (2019) Why Do Things Fall?
[18]  Davies, E.B. and Lewis, J.T. (1970) An Operational Approach to Quantum Probability. Communications in Mathematical Physics, 17, 239-260.
https://doi.org/10.1007/bf01647093
[19]  Reed, M. and Simon, B. (1972) Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press.
[20]  Swingle, B. (2012) Entanglement Renormalization and Holography. Physical Review D, 86, Article ID: 065007.
https://doi.org/10.1103/physrevd.86.065007
[21]  Wightman, A.S. (1956) Quantum Field Theory in Terms of Vacuum Expectation Values. Physical Review, 101, 860-866.
https://doi.org/10.1103/physrev.101.860
[22]  Araki, H. (1999) Mathematical Theory of Quantum Fields. Oxford University Press.
[23]  Reed, M. and Simon, B. (1975) Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press.
[24]  Thirring, W. (2002) Quantum Mathematical Physics: Atoms, Molecules and Large Systems. Springer.
[25]  Stone, M.H. (1932) On One-Parameter Unitary Groups in Hilbert Space. The Annals of Mathematics, 33, 643-648.
https://doi.org/10.2307/1968538
[26]  Berezin, F.A. (1966) The Method of Second Quantization. Academic Press.
[27]  Dunford, N. and Schwartz, J.T. (1963) Linear Operators, Part II: Spectral Theory. Interscience Publishers.
[28]  Yang, C.N. and Mills, R.L. (1954) Conservation of Isotopic Spin and Isotopic Gauge Invariance. Physical Review, 96, 191-195.
https://doi.org/10.1103/physrev.96.191
[29]  Strocchi, F. (1967) Gauge Problem in Quantum Field Theory. Physical Review, 162, 1429-1438.
https://doi.org/10.1103/physrev.162.1429
[30]  Haag, R. (1992) Local Quantum Physics: Fields, Particles, Algebras. Springer.
[31]  Haag, R. and Kastler, D. (1964) An Algebraic Approach to Quantum Field Theory. Journal of Mathematical Physics, 5, 848-861.
https://doi.org/10.1063/1.1704187
[32]  Becchi, C., Rouet, A. and Stora, R. (1976) Renormalization of Gauge Theories. Annals of Physics, 98, 287-321.
https://doi.org/10.1016/0003-4916(76)90156-1
[33]  Kato, T. (1995) Perturbation Theory for Linear Operators. Springer-Verlag.
[34]  Görding, L. (1953) On the Essential Spectrum of Schrödinger Operators. Journal of Mathematical Analysis and Applications, 52, 1-29.
[35]  Friedrichs, K. (1934) Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren. Mathematische Annalen, 109, 465-487.
https://doi.org/10.1007/bf01449150
[36]  Reed, M. and Simon, B. (1978) Methods of Modern Mathematical Physics IV: Analysis of Operators. Academic Press.
[37]  ‘tHooft, G. (1971) Renormalization of Massless Yang-Mills Fields. Nuclear Physics B, 33, 173-199.
https://doi.org/10.1016/0550-3213(71)90395-6
[38]  Neumann, J. (1932) Uber Adjungierte Funktionaloperatoren. The Annals of Mathematics, 33, 294-310.
https://doi.org/10.2307/1968331
[39]  Krein, M.G. (1947) The Theory of Self-Adjoint Extensions of Semi-Bounded Hermitian Transformations and Its Applications. Matematicheskii Sbornik, 62, 431-495.
[40]  Gelfand, I.M. and Naimark, M.A. (1943) On the Embedding of Normed Rings into the Ring of Operators in Hilbert Space. Matematicheskii Sbornik, 54, 197-217.
[41]  Riesz, F. and Sz.-Nagy, B. (1990) Functional Analysis. Dover Publications.
[42]  Nelson, E. (1959) Analytic Vectors. The Annals of Mathematics, 70, 72-615.
https://doi.org/10.2307/1970331
[43]  Halmos, P.R. (1957) Introduction to Hilbert Space and the Theory of Spectral Multiplicity. Chelsea Publishing Company.
[44]  Heisenberg, W. (1925) Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik, 33, 879-893.
https://doi.org/10.1007/bf01328377
[45]  Heisenberg, W. (1930) The Physical Principles of Quantum Theory. University of Chicago Press.
[46]  Bratteli, O. and Robinson, D.W. (2002) Operator Algebras and Quantum Statistical Mechanics 2. Springer.
[47]  Robertson, H.P. (1929) The Uncertainty Principle. Physical Review, 34, 163-164.
https://doi.org/10.1103/physrev.34.163
[48]  Schrödinger, E. (1930) Zum Heisenbergschen Unschärfeprinzip. Sitzungsberichte der Preussischen Akademie der Wissenschaften, 14, 296-303.
[49]  Ehrenfest, P. (1927) Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Zeitschrift für Physik, 45, 455-457.
https://doi.org/10.1007/bf01329203
[50]  Margolus, N. and Levitin, L.B. (1998) The Maximum Speed of Dynamical Evolution. Physica D: Nonlinear Phenomena, 120, 188-195.
https://doi.org/10.1016/s0167-2789(98)00054-2
[51]  Mandelstam, L. (1991) Lectures on Optics, Relativity, and Quantum Mechanics. Chelsea Publishing Company.
[52]  Eisert, J., Cramer, M. and Plenio, M.B. (2010) Colloquium: Area Laws for the Entanglement Entropy. Reviews of Modern Physics, 82, 277-306.
https://doi.org/10.1103/revmodphys.82.277
[53]  Vidal, G. (2003) Efficient Classical Simulation of Slightly Entangled Quantum Computations. Physical Review Letters, 91, Article ID: 147902.
https://doi.org/10.1103/physrevlett.91.147902
[54]  Maldacena, J., Shenker, S.H. and Stanford, D. (2016) A Bound on Chaos. Journal of High Energy Physics, 2016, 106.
https://doi.org/10.1007/jhep08(2016)106
[55]  Nielsen, M.A. and Chuang, I.L. (2000) Quantum Computation and Quantum Information. Cambridge University Press.
[56]  Sekino, Y. and Susskind, L. (2008) Fast Scramblers. Journal of High Energy Physics, 2008, 65.
https://doi.org/10.1088/1126-6708/2008/10/065
[57]  Bekenstein, J.D. (1973) Black Holes and Entropy. Physical Review D, 7, 2333-2346.
https://doi.org/10.1103/physrevd.7.2333
[58]  Almheiri, A., Marolf, D., Polchinski, J. and Sully, J. (2013) Black Holes: Complementarity or Firewalls? Journal of High Energy Physics, 2013, 62.
https://doi.org/10.1007/jhep02(2013)062
[59]  Harlow, D. and Hayden, P. (2013) Quantum Computation vs. Firewalls. Journal of High Energy Physics, 2013, 85.
https://doi.org/10.1007/jhep06(2013)085
[60]  Preskill, J. (2018) Quantum Computing in the NISQ Era and Beyond. Quantum, 2, 79.
https://doi.org/10.22331/q-2018-08-06-79
[61]  Gottesman, D. (2010) An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation. Proceedings of Symposia in Pure Mathematics, 68, 13-58.
[62]  Aharonov, D. and Ben-Or, M. (2008) Fault-Tolerant Quantum Computation with Constant Error Rate. SIAM Journal on Computing, 38, 1207-1282.
https://doi.org/10.1137/s0097539799359385
[63]  Preskill, J. (2012) Quantum Computing and the Entanglement Frontier.
[64]  Aaronson, S. and Arkhipov, A. (2014) Bosonsampling Is Far from Uniform. Quantum Information and Computation, 14, 1383-1423.
https://doi.org/10.26421/qic14.15-16-7
[65]  Razborov, A.A. (1985) Lower Bounds for the Monotone Complexity of Some Boolean Functions. Soviet Mathematics Doklady, 31, 354-357.
[66]  Bremermann, H.J. (1982) Minimum Energy Requirements of Information Transfer and Computing. International Journal of Theoretical Physics, 21, 203-217.
https://doi.org/10.1007/bf01857726
[67]  Watrous, J. (2009) Quantum Computational Complexity. In: Meyers, R.A., Ed., Encyclopedia of Complexity and Systems Science, Springer, 7174-7201.
https://doi.org/10.1007/978-0-387-30440-3_428
[68]  Paris, M.G.A. (2009) Quantum Estimation for Quantum Technology. International Journal of Quantum Information, 7, 125-137.
https://doi.org/10.1142/s0219749909004839
[69]  Giovannetti, V., Lloyd, S. and Maccone, L. (2011) Advances in Quantum Metrology. Nature Photonics, 5, 222-229.
https://doi.org/10.1038/nphoton.2011.35
[70]  Aharonov, D. and Kitaev, A. (2005) Quantum Computation with Magnetic Flux Qubits. Physical Review A, 71, Article ID: 052303.
[71]  Kitaev, A.Y. (2003) Quantum Measurements and the Abelian Stabilizer Problem. Electronic Colloquium on Computational Complexity, Report No. 3, 1-22.
[72]  Knill, E. (2005) Quantum Computing with Realistically Noisy Devices. Nature, 434, 39-44.
https://doi.org/10.1038/nature03350
[73]  Holevo, A.S. (2001) Statistical Structure of Quantum Theory. Springer.
[74]  Clerk, A.A., Devoret, M.H., Girvin, S.M., Marquardt, F. and Schoelkopf, R.J. (2010) Introduction to Quantum Noise, Measurement, and Amplification. Reviews of Modern Physics, 82, 1155-1208.
https://doi.org/10.1103/revmodphys.82.1155
[75]  Breuer, H.P. and Petruccione, F. (2016) The Theory of Open Quantum Systems. Oxford University Press.
[76]  Martinis, J.M. (2015) Qubit Metrology for Building a Fault-Tolerant Quantum Computer. NPJ Quantum Information, 5, 1-4.
https://doi.org/10.1038/npjqi.2015.5
[77]  Zurek, W.H. (2003) Decoherence, Einselection, and the Quantum Origins of the Classical. Reviews of Modern Physics, 75, 715-775.
https://doi.org/10.1103/revmodphys.75.715
[78]  Hoeffding, W. (1963) Probability Inequalities for Sums of Bounded Random Variables. Journal of the American Statistical Association, 58, 13-30.
https://doi.org/10.1080/01621459.1963.10500830
[79]  Helstrom, C.W. (1976) Quantum Detection and Estimation Theory. Academic Press.
[80]  Arute, F., et al. (2019) Quantum Supremacy Using a Programmable Superconducting Processor. Nature, 574, 505-510.
[81]  Blais, A., Grimsmo, A.L., Girvin, S.M. and Wallraff, A. (2021) Circuit Quantum Electrodynamics. Reviews of Modern Physics, 93, Article ID: 025005.
https://doi.org/10.1103/revmodphys.93.025005
[82]  Monroe, C., Campbell, W.C., Duan, L., Gong, Z., Gorshkov, A.V., Hess, P.W., et al. (2021) Programmable Quantum Simulations of Spin Systems with Trapped Ions. Reviews of Modern Physics, 93, Article ID: 025001.
https://doi.org/10.1103/revmodphys.93.025001
[83]  Bloch, I., Dalibard, J. and Nascimbène, S. (2012) Quantum Simulations with Ultracold Quantum Gases. Nature Physics, 8, 267-276.
https://doi.org/10.1038/nphys2259
[84]  Loss, D. and DiVincenzo, D.P. (1998) Quantum Computation with Quantum Dots. Physical Review A, 57, 120-126.
https://doi.org/10.1103/physreva.57.120
[85]  Chitambar, E. and Gour, G. (2019) Quantum Resource Theories. Reviews of Modern Physics, 91, Article ID: 025001.
https://doi.org/10.1103/revmodphys.91.025001
[86]  Kitaev, A.Y. (1997) Quantum Computations: Algorithms and Error Correction. Russian Mathematical Surveys, 52, 1191-1249.
https://doi.org/10.1070/rm1997v052n06abeh002155
[87]  Wheeler, J.A. (1990) Information, Physics, Quantum: The Search for Links. Complexity, Entropy, and the Physics of Information, 8, 3-28.
[88]  t’Hooft, G. (1993) Dimensional Reduction in Quantum Gravity.
[89]  Deutsch, D. (1985) Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. Proceedings of the Royal Society of London A, 400, 97-117.
[90]  Maldacena, J. and Susskind, L. (2013) Cool Horizons for Entangled Black Holes. Fortschritte der Physik, 61, 781-811.
https://doi.org/10.1002/prop.201300020
[91]  Nye, L. (2024) Quantum Extensions to the Einstein Field Equations. Journal of High Energy Physics, Gravitation and Cosmology, 10, 2007-2031.
https://doi.org/10.4236/jhepgc.2024.104110
[92]  Rovelli, C. (2004) Quantum Gravity. Cambridge University Press.
https://doi.org/10.1017/cbo9780511755804
[93]  Page, D.N. (1993) Information in Black Hole Radiation. Physical Review Letters, 71, 3743-3746.
https://doi.org/10.1103/physrevlett.71.3743
[94]  Hayden, P. and Preskill, J. (2007) Black Holes as Mirrors: Quantum Information in Random Subsystems. Journal of High Energy Physics, 2007, 120.
https://doi.org/10.1088/1126-6708/2007/09/120
[95]  Lloyd, S. (2006) Programming the Universe: A Quantum Computer Scientist Takes on the Cosmos. Vintage Books.
[96]  Rovelli, C. (1996) Relational Quantum Mechanics. International Journal of Theoretical Physics, 35, 1637-1678.
https://doi.org/10.1007/bf02302261
[97]  Weinberg, S. (1995) The Quantum Theory of Fields, Volume 1: Foundations. Cambridge University Press.
[98]  Hooft, G. (1974) A Planar Diagram Theory for Strong Interactions. Nuclear Physics B, 72, 461-473.
https://doi.org/10.1016/0550-3213(74)90154-0
[99]  Witten, E. (1998) Anti-de Sitter Space, Thermal Phase Transition, and Confinement in Gauge Theories. Advances in Theoretical and Mathematical Physics, 2, 505-532.
https://doi.org/10.4310/atmp.1998.v2.n3.a3
[100]  Hawking, S.W. (1973) The Event Horizon. In: DeWitt, C. and DeWitt, B.S., Eds., Black Holes (Les Astres Occlus), Gordon and Breach Science Publishers, 1-56.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133