|
基于改进蜣螂优化算法的移动机器人多目标点路径规划
|
Abstract:
针对标准蜣螂优化算法求解移动机器人多目标点路径规划问题存在求解精度低、收敛速度慢与易陷入局部最优等问题,本文提出一种改进蜣螂优化算法(IDBO)。首先,采用Logistic-tent混沌映射生成初始化种群,提高种群多样性;其次,设计一种对数调整因子改善小蜣螂觅食方式,提升算法前期搜索能力与后期开发能力;最后,对蜣螂种群嵌入精英差分变异,并通过贪婪选择更优解,提升算法跳出局部最优的能力。仿真结果表明,在地图1、地图2和地图3的环境下,本文改进蜣螂优化算法平均路径长度均少于DBO算法,相较于DBO算法平均路径长度分别减少了22.54%、20.86%、15.61%。因此,对于多目标点路径规划问题的求解,本文改进蜣螂优化算法对于求解多目标点路径规划问题收敛精度、寻优速度、规划路径质量与鲁棒性均表现优异。
The present paper proposes an Improved Dung Beetle Optimisation Algorithm (IDBO) as a solution to the multi-objective point path planning problem of mobile robots, which has the problems of low solution accuracy, slow convergence speed and easy to fall into the local optimum. Firstly, a logistic-tent chaotic mapping is employed to generate an initial population, thereby enhancing population diversity. Secondly, a logarithmic adjustment factor is designed to improve the foraging mode of small dung beetles, thus enhancing pre-searching ability and post-exploitation ability of the algorithm; and lastly, an elite differential variant is embedded in the dung beetle population, and a better solution is chosen through greedy selection to enhance the ability of the algorithm to jump out of the local optimum. The simulation results demonstrate that the average path length of the improved dung beetle optimisation algorithm is shorter than that of the DBO algorithm in environments 1, 2 and 3. The average path lengths are reduced by 22.54%, 20.86% and 15.61%, respectively, in comparison with the DBO algorithm. Consequently, the enhanced dung beetle optimisation algorithm in this study demonstrates notable proficiency in terms of convergence accuracy, optimisation speed, planning path quality and robustness for addressing multi-objective path planning challenges.
[1] | 宋云云, 李兴鑫. PSO-RRT机器人可行路径搜索融合算法[J]. 智能计算机与应用, 2025, 15(1): 165-170. |
[2] | 白俊卿, 魏雪涛, 张红猛. 基于改进混合A*算法的自动泊车路径规划方法研究[J]. 计算机测量与控制, 2025, 33(1): 226-234. |
[3] | 李亮, 吴杰康, 张彬, 等. 台风灾害下配电网考虑移动应急电源路径规划的调度模型[J/OL]. 南方电网技术: 1-11. http://kns.cnki.net/kcms/detail/44.1643.TK.20250211.1507.004.html, 2025-02-17. |
[4] | 任林鹏, 郄海波, 孟才植. 海上油田智能巡检机器人的研发与应用[J]. 天津科技, 2023, 50(4): 67-70. |
[5] | 周凯莉, 刘从军. 基于优化麻雀搜索算法的水下机器人路径规划研究[J]. 计算机与数字工程, 2023, 51(9): 2048-2054. |
[6] | 孙波, 周健康, 赵玉清, 等. 基于改进灰狼优化算法的机器人全局路径规划[J]. 科学技术与工程, 2024, 24(33): 14287-14297. |
[7] | 肖维. 基于改进哈里斯鹰优化算法仓储机器人全局路径规划探究[J]. 现代计算机, 2024, 30(24): 81-84. |
[8] | 曾广财, 叶军, 宋苏洋, 等. 一种改进的鲸鱼优化算法在机器人路径规划中的应用[J/OL]. 火炮发射与控制学报: 1-9. https://doi.org/10.19323/j.issn.1673-6524.202409011, 2025-02-17. |
[9] | 娄革伟, 郑永煌, 陈均, 等. 混合多策略改进的蜣螂优化算法[J]. 计算机工程与应用, 2024, 60(24): 97-109. |
[10] | 吴亚中, 陈璐, 马强, 等. 多策略增强的蜣螂优化算法及其工程应用[J]. 华中科技大学学报(自然科学版), 2025, 53(2): 95-103. |
[11] | Zhang, R. and Zhu, Y. (2023) Predicting the Mechanical Properties of Heat-Treated Woods Using Optimization-Algorithm-Based BPNN. Forests, 14, Article 935. https://doi.org/10.3390/f14050935 |
[12] | Jin, H., Ji, H. and Yan, F. (2023) An Effective Obstacle Avoidance and Motion Planning Design for Underwater Telescopic Arm Robots Based on a Tent Chaotic Dung Beetle Algorithm. Electronics, 12, Article 4128. https://doi.org/10.3390/electronics12194128 |
[13] | 郭琴, 郑巧仙. 多策略改进的蜣螂优化算法及其应用[J]. 计算机科学与探索, 2024, 18(4): 930-946. |
[14] | 赵鑫, 王东丽, 彭泓, 等. 基于多策略改进蜣螂算法优化的变压器故障诊断[J]. 电力系统保护与控制, 2024, 52(6): 120-130. |
[15] | Li, L., Liu, L., Shao, Y., Zhang, X., Chen, Y., Guo, C., et al. (2023) Enhancing Swarm Intelligence for Obstacle Avoidance with Multi-Strategy and Improved Dung Beetle Optimization Algorithm in Mobile Robot Navigation. Electronics, 12, Article 4462. https://doi.org/10.3390/electronics12214462 |
[16] | 李泳科, 湛文静. 多因素自适应栅格中的改进蚁群算法路径规划[J]. 计算机与数字工程, 2024, 52(11): 3310-3317. |
[17] | 陈永康, 蒲德奎, 何小丽. 基于PSO融合蚁群算法的机器人路径规划研究[J]. 重庆电力高等专科学校学报, 2024, 29(6): 20-24. |
[18] | 范县成, 凌新宇, 余叶青, 等. 基于算法融合的多机器人多目标路径规划研究[J/OL]. 云南民族大学学报(自然科学版): 1-10. http://kns.cnki.net/kcms/detail/53.1192.n.20241231.1243.010.html, 2025-02-17. |
[19] | 吴倩, 杜柱石, 王立岩. 基于Logistic映射的通信网络信息安全加密方法[J]. 信息技术与信息化, 2024(12): 61-64. |
[20] | 王鹏, 周俊, 伍星, 等. 改进Sine混沌映射CO-ELM锂离子电池RUL预测[J/OL]. 储能科学与技术: 1-17. https://doi.org/10.19799/j.cnki.2095-4239.2024.0990, 2025-02-17. |
[21] | 郭现峰, 李浩华, 魏金玉. 基于Fibonacci变换和改进Logistic-Tent混沌映射的图像加密方案[J]. 吉林大学学报(工学版), 2023, 53(7): 2115-2120. |
[22] | 周建新, 侯自川, 李忠泽. 融合多策略改进的黑翅鸢优化算法[J]. 电子测量技术, 2024, 47(22): 104-110. |
[23] | 王颍超. 鲸鱼优化算法研究与应用进展[J]. 计算机工程与科学, 2024, 46(5): 881-896. |
[24] | 孔令崧, 石颉, 孙浩, 等. 融合黑寡妇思想的蜣螂优化算法[J/OL]. 微电子学与计算机: 1-15. http://kns.cnki.net/kcms/detail/61.1123.tn.20240507.1941.018.html, 2025-02-17. |