全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Stacking的脓毒症患者死亡风险预测模型
Prediction Model of Mortality Risk of Sepsis Patients Based on Stacking Algorithm

DOI: 10.12677/mos.2025.143220, PP. 261-269

Keywords: 贝叶斯优化,堆叠算法,评估函数,脓毒症,死亡风险
Bayesian Optimization
, Stacking Algorithm, Assessment Functions, Sepsis, Mortality Risk

Full-Text   Cite this paper   Add to My Lib

Abstract:

脓毒症是由感染反应失调引起的危及生命的器官功能障碍,早期识别和预测高风险群体是降低患者死亡风险的关键。本研究采用多指标评估基础分类器的可信度得分,并引入贝叶斯优化算法构建脓毒症患者死亡风险预测模型。通过AUC、准确率、召回率、精确度和F1分数等指标全面评估模型的预测效果和性能,并使用特征重要性分析对模型预测结果进行可解释性分析,以提高辅助临床决策的及时性和准确性。结果表明,构建的Stacking模型在AUC、准确率、精确率等多个评估指标上表现优异,性能表现较优。特征重要性分析表明APACHE III评分、WBC等是影响脓毒症患者死亡风险的重要因素。本研究构建的Stacking脓毒症患者死亡风险预测模型具有较高的预测准确性,能够有效辅助医务人员对患者进行死亡风险评估,从而及时采取干预措施,改善患者预后。
Sepsis is a life-threatening organ dysfunction caused by the imbalance of infection response. Early identification and prediction of high-risk groups is the key to reduce the risk of death of patients. In this study, multiple indicators were used to evaluate the reliability score of the basic classifier, and Bayesian optimization algorithm was introduced to construct the death risk prediction model of sepsis patients. The prediction effect and performance of the model are comprehensively evaluated by AUC, accuracy, recall, accuracy and F1 score, and the predictive results of the model are interpretable by using feature importance analysis, so as to improve the timeliness and accuracy of assisting clinical decision-making. The results show that the Stacking model has excellent performance in AUC, accuracy, precision and other evaluation indexes. Characteristic importance analysis showed that APACHE III score was an important factor affecting the death risk of sepsis patients. The mortality risk prediction model of Stacking sepsis patients constructed in this study has high prediction accuracy, and can effectively assist medical staff to evaluate the mortality risk of patients, so as to take timely intervention measures and improve the prognosis of patients.

References

[1]  Seymour, C.W., Liu, V.X., Iwashyna, T.J., Brunkhorst, F.M., Rea, T.D., Scherag, A., et al. (2016) Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 762-774.
https://doi.org/10.1001/jama.2016.0288
[2]  Ruth, A., McCracken, C.E., Fortenberry, J.D., Hall, M., Simon, H.K. and Hebbar, K.B. (2014) Pediatric Severe Sepsis: Current Trends and Outcomes from the Pediatric Health Information Systems Database. Pediatric Critical Care Medicine, 15, 828-838.
https://doi.org/10.1097/pcc.0000000000000254
[3]  江伟, 杜斌. 中国脓毒症流行病学现状[J]. 医学研究生学报, 2019, 32(1): 5-8.
[4]  王仲, 魏捷, 朱华栋, 曹钰. 中国脓毒症早期预防与阻断急诊专家共识[J]. 中国急救医学, 2020, 40(7): 577-588.
[5]  齐霜, 徐浩然, 胡婕, 毛智, 胡新, 周飞虎. 基于机器学习的重症监护病房脓毒症患者早期死亡风险预测模型[J]. 解放军医学院学报, 2021, 42(2): 150-155+181.
[6]  Nemati, S., Holder, A., Razmi, F., Stanley, M.D., Clifford, G.D. and Buchman, T.G. (2018) An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU. Critical Care Medicine, 46, 547-553.
https://doi.org/10.1097/ccm.0000000000002936
[7]  Zhang, Z., Chen, L., Xu, P. and Hong, Y. (2022) Predictive Analytics with Ensemble Modeling in Laparoscopic Surgery: A Technical Note. Laparoscopic, Endoscopic and Robotic Surgery, 5, 25-34.
https://doi.org/10.1016/j.lers.2021.12.003
[8]  Frazier, P.I. (2018) Bayesian Optimization. In: Gel, E., Ntaimo, L., Shier, D. and Greenberg, H.J., Eds., Recent Advances in Optimization and Modeling of Contemporary Problems, INFORMS, 255-278.
https://doi.org/10.1287/educ.2018.0188
[9]  Shahriari, B., Swersky, K., Wang, Z., Adams, R.P. and de Freitas, N. (2016) Taking the Human out of the Loop: A Review of Bayesian Optimization. Proceedings of the IEEE, 104, 148-175.
https://doi.org/10.1109/jproc.2015.2494218
[10]  Johnson, A.E.W., Bulgarelli, L., Shen, L., Gayles, A., Shammout, A., Horng, S., et al. (2023) MIMIC-IV, a Freely Accessible Electronic Health Record Dataset. Scientific Data, 10, Article No. 1.
https://doi.org/10.1038/s41597-022-01899-x
[11]  Snoek, J., Larochelle, H. and Adams, R.P. (2012) Practical Bayesian Optimization of Machine Learning Algorithms. Proceedings of the 26th International Conference on Neural Information Processing Systems, 2, 2951-2959.
[12]  Liaw, P.C., Fox-Robichaud, A.E., Liaw, K., McDonald, E., Dwivedi, D.J., Zamir, N.M., et al. (2019) Mortality Risk Profiles for Sepsis: A Novel Longitudinal and Multivariable Approach. Critical Care Explorations, 1, e0032.
https://doi.org/10.1097/cce.0000000000000032
[13]  Hu, C., Li, L., Huang, W., Wu, T., Xu, Q., Liu, J., et al. (2022) Interpretable Machine Learning for Early Prediction of Prognosis in Sepsis: A Discovery and Validation Study. Infectious Diseases and Therapy, 11, 1117-1132.
https://doi.org/10.1007/s40121-022-00628-6
[14]  王盛标, 李涛, 李云峰, 张建文, 戴新贵. 4种评分系统对脓毒症患者预后的评估价值: 附311例回顾性分析[J]. 中华危重病急救医学, 2017, 29(2): 133-138.
[15]  黄嵘, 徐芳媛, 方向群, 李翔. 急诊脓毒症严重程度评分对ICU脓毒症患者预后的预测价值[J]. 浙江医学, 2021, 43(2): 176-179.
[16]  姚咏明, 盛志勇. 脓毒症研究若干重要科学问题的思考[J]. 中华危重病急救医学, 2016, 28(2): 102-103.
[17]  Belok, S.H., Bosch, N.A., Klings, E.S. and Walkey, A.J. (2021) Evaluation of Leukopenia during Sepsis as a Marker of Sepsis-Defining Organ Dysfunction. PLOS ONE, 16, e0252206.
https://doi.org/10.1371/journal.pone.0252206

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133