全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

求解非线性退化抛物方程的HWENO-LW格式
HWENO-LW Scheme for Solving Nonlinear Degenerate Parabolic Equations

DOI: 10.12677/aam.2025.143116, PP. 292-302

Keywords: HWENO格式,Lax-Wendroff时间离散,非线性退化抛物方程,有限差分方法
HWENO Scheme
, Lax-Wendroff Time Discretization, Nonlinear Degenerate Parabolic Equations, Finite Difference Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文构造了基于Lax-Wendroff时间离散的有限差分HWENO (Hermite加权本质非振荡)格式,用于求解非线性退化抛物方程。与传统的Runge-Kutta时间离散方法相比,Lax-Wendroff方法在提高计算效率的同时,能够在解的光滑区域实现时空一致的高阶精度。通过数值算例,验证了该方法的有效性。
This paper constructs a finite difference HWENO (Hermite Weighted Essentially Non-Oscillatory) scheme based on Lax-Wendroff time discretization for solving nonlinear degenerate parabolic equations. Compared to traditional Runge-Kutta time discretization methods, the Lax-Wendroff method improves computational efficiency while achieving high-order accuracy in both space and time in smooth regions of the solution. The effectiveness of the method is validated through numerical examples.

References

[1]  Harten, A. (1997) High Resolution Schemes for Hyperbolic Conservation Laws. Journal of Computational Physics, 135, 260-278.
https://doi.org/10.1006/jcph.1997.5713
[2]  Harten, A. and Osher, S. (1987) Uniformly High-Order Accurate Nonoscillatory Schemes. I. SIAM Journal on Numerical Analysis, 24, 279-309.
https://doi.org/10.1137/0724022
[3]  Jiang, G. and Shu, C. (1996) Efficient Implementation of Weighted ENO Schemes. Journal of Computational Physics, 126, 202-228.
https://doi.org/10.1006/jcph.1996.0130
[4]  Balsara, D.S. and Shu, C. (2000) Monotonicity Preserving Weighted Essentially Non-Oscillatory Schemes with Increasingly High Order of Accuracy. Journal of Computational Physics, 160, 405-452.
https://doi.org/10.1006/jcph.2000.6443
[5]  Qiu, J. and Shu, C. (2002) On the Construction, Comparison, and Local Characteristic Decomposition for High-Order Central WENO Schemes. Journal of Computational Physics, 183, 187-209.
https://doi.org/10.1006/jcph.2002.7191
[6]  Liu, X., Osher, S. and Chan, T. (1994) Weighted Essentially Non-Oscillatory Schemes. Journal of Computational Physics, 115, 200-212.
https://doi.org/10.1006/jcph.1994.1187
[7]  Friedrich, O. (1998) Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids. Journal of Computational Physics, 144, 194-212.
https://doi.org/10.1006/jcph.1998.5988
[8]  Hu, C. and Shu, C. (1999) Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes. Journal of Computational Physics, 150, 97-127.
https://doi.org/10.1006/jcph.1998.6165
[9]  Qiu, J. and Shu, C. (2005) Hermite WENO Schemes and Their Application as Limiters for Runge-Kutta Discontinuous Galerkin Method II: Two-Dimensional Case. Computers & Fluids, 34, 642-663.
https://doi.org/10.1016/j.compfluid.2004.05.005
[10]  Qiu, J. and Shu, C. (2005) Hermite WENO Schemes for Hamilton-Jacobi Equations. Journal of Computational Physics, 204, 82-99.
https://doi.org/10.1016/j.jcp.2004.10.003
[11]  Shu, C. (1988) Total-Variation-Diminishing Time Discretizations. SIAM Journal on Scientific and Statistical Computing, 9, 1073-1084.
https://doi.org/10.1137/0909073
[12]  Lax, P. and Wendroff, B. (2005) Systems of Conservation Laws. In: Selected Papers, Volume I, Springer, 263-283.
[13]  Qiu, J. and Shu, C. (2003) Finite Difference WENO Schemes with Lax-Wendroff-Type Time Discretizations. SIAM Journal on Scientific Computing, 24, 2185-2198.
https://doi.org/10.1137/s1064827502412504
[14]  Qiu, J. (2007) Hermite WENO Schemes with Lax-Wendroff type Time Discretizations for Hamilton-Jacobi Equations. Journal of Computational Mathematics, 25, 131-144.
[15]  Qiu, J. (2007) WENO Schemes with Lax-Wendroff Type Time Discretizations for Hamilton-Jacobi Equations. Journal of Computational and Applied Mathematics, 200, 591-605.
https://doi.org/10.1016/j.cam.2006.01.022
[16]  Shi, J., Hu, C. and Shu, C. (2002) A Technique of Treating Negative Weights in WENO Schemes. Journal of Computational Physics, 175, 108-127.
https://doi.org/10.1006/jcph.2001.6892
[17]  Henrick, A.K., Aslam, T.D. and Powers, J.M. (2005) Mapped Weighted Essentially Non-Oscillatory Schemes: Achieving Optimal Order near Critical Points. Journal of Computational Physics, 207, 542-567.
https://doi.org/10.1016/j.jcp.2005.01.023
[18]  Kurganov, A. and Tadmor, E. (2000) New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection-Diffusion Equations. Journal of Computational Physics, 160, 241-282.
https://doi.org/10.1006/jcph.2000.6459
[19]  Cavalli, F., Naldi, G., Puppo, G. and Semplice, M. (2007) High-Order Relaxation Schemes for Nonlinear Degenerate Diffusion Problems. SIAM Journal on Numerical Analysis, 45, 2098-2119.
https://doi.org/10.1137/060664872

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133