|
Pure Mathematics 2025
关于一类临界点在单位圆周的有理函数的存在性及构造
|
Abstract:
周宏毅在论文关于Herman环与临界点中给出了三次有理函数且其临界点严格位于Herman环的边界分支的例子。该构造中主要用到临界点都位于单位圆周且保持单位圆周不动的有理函数的存在性。本文给出了一般的有理函数临界点均在单位圆周且保持单位圆周不动的存在性证明。同时讨论了一般显示构造的方法。
In A Note on Herman, Hongyi Zhou gave an example of a cubic rational function whose critical points strictly lie on the boundary of the Herman ring. The construction mainly relies on the existence of rational functions whose critical points are located on the unit circle and keep the unit circle invariant. In this paper, we provide a general proof for the existence of rational functions whose critical points are all on the unit circle and keep the unit circle invariant. Additionally, we discuss the general methods for explicit constructions.
[1] | Shishikura, M. (1987) On the Quasiconformal Surgery of Rational Functions. Annales scientifiques de l’École normale supérieure, 20, 1-29. https://doi.org/10.24033/asens.1522 |
[2] | Chu, H. (2018) Surgery on Herman Rings of the Standard Blaschke Family. Discrete & Continuous Dynamical Systems A, 38, 63-74. https://doi.org/10.3934/dcds.2018003 |
[3] | Molino, P. (1977) Étude des feuilletages transversalement complets et applications. Annales scientifiques de l’École normale supérieure, 10, 289-307. https://doi.org/10.24033/asens.1328 |
[4] | Wang, X. and Zhang, G. (2009) Constructing Herman Rings by Twisting Annulus Homeomorphisms. Journal of the Australian Mathematical Society, 86, 139-143. https://doi.org/10.1017/s1446788708000621 |
[5] | 周弘毅. 关于Herman 环与临界点[J]. 理论数学, 2023, 13(12): 3736-3741. |
[6] | Lyubich, M. (1983) On Typical Behavior of the Trajectories of a Rational Mapping of the Sphere. Doklady Akademii Nauk SSSR, 268, 29-32. |
[7] | Milnor, J. (2006) Dynamics in One Complex Variable. 3rd Edition, Princeton University Press. |
[8] | Milnor, J. (1994) Complex Dynamics and Renormalization. Princeton University Press. |
[9] | Fu, Y.M., Yang, F. and Zhang, G.F. (2022) Quadratic Rational Maps with a 2-Cycle of Siegel Disks. |
[10] | Wang, S.Y., Yang, F., Zhang, G.F. and Zhang, Y.H. (2023) Local Connectivity of Julia Sets of Some Rational Maps with Siegel Disks. |
[11] | Beurling, A. and Ahlfors, L. (1956) The Boundary Correspondence under Quasiconformal Mappings. Acta Mathematica, 96, 125-142. https://doi.org/10.1007/bf02392360 |
[12] | Branner, B. and Fagella, N. (2014) Quasiconformal Surgery in Holomorphic Dynamics. Cambridge University Press. https://doi.org/10.1017/cbo9781107337602 |
[13] | Ahlfors, L.V. (1966) Lectures on Quasiconformal Mappings. University of California Press. |