全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Evolutionary Nonconservative Field Theories

DOI: 10.4236/jamp.2025.133038, PP. 689-708

Keywords: Mathematical Methods in Quantum Theory, Nonconservative Quantum Systems, Nonconservative Systems, Exact Methods for Solution of Pdes, Nonconservative Systems, Integrable Nonconservative Systems, Nonconservative Systems of Variational Origin, Nonconservative Processes

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper introduces a new evolutionary system which is uniquely suitable for the description of nonconservative systems in field theories, including quantum mechanics, but is not limited to it only. This paper also introduces a new exact method of solution for such nonconservative systems. These are significant contributions because the vast majority of nonconservative systems with several independent variables do not have self-adjoint Frechet derivatives and because of that can not benefit from the exact methods of the classical calculus of variations. The new evolutionary system is rigorously mathematically derived and the new method for solution is mathematically proved to be applicable to systems of PDEs of second order for nonconservative process. As examples of applications, the method is applied to several nonconservative systems: the propagation of electromagnetic fields in a conductive medium, the nonlinear Schrodinger equation with electromagnetic interactions, and others.

References

[1]  Georgieva, B., Guenther, R. and Bodurov, T. (2003) Generalized Variational Principle of Herglotz for Several Independent Variables. First Noether-Type Theorem. Journal of Mathematical Physics, 44, 3911-3927.
https://doi.org/10.1063/1.1597419
[2]  Georgieva, B. and Guenther, R.B. (2002) First Noether-Type Theorem for the Generalized Variational Principle of Herglotz. Topological Methods in Nonlinear Analysis, 20, 261-273.
https://doi.org/10.12775/tmna.2002.036
[3]  Georgieva, B. and Guenther, R.B. (2005) Second Noether-Type Theorem for the Generalized Variational Principle of Herglotz. Topological Methods in Nonlinear Analysis, 26, 307-314.
https://doi.org/10.12775/tmna.2005.034
[4]  Georgieva, B. (2011) Symmetries of the Generalized Variational Functional of Herglotz for Several Independent Variables. Zeitschrift für Analysis und ihre Anwendungen, 30, 253-268.
https://doi.org/10.4171/zaa/1434
[5]  Georgieva, B. (2010) Symmetries of the Herglotz Variational Principle in the Case of One Independent Variable. Annual of Sofia University St. Kliment Ohridski, 100, 113-122.
[6]  Georgieva, B. and Bodurov, T. (2013) Identities from Infinite-Dimensional Symmetries of Herglotz Variational Functional. Journal of Mathematical Physics, 54, Article ID: 062901.
https://doi.org/10.1063/1.4807728
[7]  Guenther, R., Gottsch, A. and Guenther, C. (1996) The Herglotz Lectures on Contact Trans-Formations and Hamiltonian Systems. Juliusz Center for Nonlinear Studies.
[8]  Herglotz, G. (1979) Gesammelte Schriften, Göttingen. Vandenhoeck & Ruprecht.
[9]  Herglotz, G. (1930) Berührungstransformationen. Lectures at the University of Göttingen.
[10]  Lie, S. (1927) Gesammelte Abhandlungen, Vol. 6. Benedictus Gotthelf Teubner, 649-663.
[11]  Lie, S. (1897) Die Theorie der Integralinvarianten ist ein Korollar der Theorie der Differentialinvarianten. Berichte, 49, 342-357.
[12]  Furta, K., Sano, A. and Atherton, D. (1988) State Variable Methods in Automatic Control. John Wiley, New York.
[13]  Caratheodory, C. (1989) Calculus of Variations and Partial Differential Equations of the First Order. 2nd Edition, Chelsea Publishing.
[14]  Mrugala, R. (1980) Contact Transformations and Brackets in Classical Thermodynamics. Acta Physica Polonica, A58, 19-29.
[15]  Georgieva, B. (2010) The Variational Principle of Herglotz and Related Results. Proceedings of the Twelfth International Conference on Geometry, Integrability and Quantization, Varna, 4-9 June 2010, 214-225.
[16]  Bodurov, T. and Georgieva, B. (2000) Complex Hamiltonian Evolution Equations. International Journal of Differential Equations and Applications, 1A, 15-22.
[17]  Eisenhart, L. (1933) Continuous Groups of Transformations. Princeton University Press.
[18]  Killing, W. (1892) Ueber die Grundlagen der Geometrie. CRLL, 1892, 121-186.
https://doi.org/10.1515/crll.1892.109.121
[19]  Logan, J. (1977) Invariant Variational Principles. Academic Press.
[20]  Noether, E. (1918) Invariante Variationsprobleme. Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 235-257.
[21]  Noether, E. (1918) Invarianten beliebiger Differentialausdrücke. Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 37-44.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133