全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Unveiling Vaginal Fibrosis: A Novel Murine Model Using Bleomycin and Epithelial Disruption

DOI: 10.4236/ojog.2025.153033, PP. 371-386

Keywords: Vagina, Fibrosis, Wound Healing, Collagen, Hyaluronan, Epithelial Disruption

Full-Text   Cite this paper   Add to My Lib

Abstract:

Vaginal fibrosis induced by cancer therapy continues to take a physical and psychoemotional burden. To advance the efforts to generate a reproducible and cost-effective animal model, we tested the effect of repeated bleomycin instillations with mucosal layer disruption on induction of vaginal fibrosis. Tissue samples collected at various time points were analyzed for fibrosis-related gene expression changes and collagen content. Low (1.5 U/kg) and high-dose (2.5 U/kg) bleomycin instillations alone did not induce fibrosis, but when high-dose bleomycin was combined with epithelial disruption, increased pro-fibrotic gene expression and trichrome staining were observed. To evaluate spatial and temporal changes in the ECM structure and gene expression, tissue samples were collected at 1 day, 3 weeks, and 6 weeks after bleomycin and epithelial disruption. Data analyses revealed a significant decrease in matrix metabolizing genes and an increase in pro-fibrotic genes and inhibitors of matrix metabolizing genes in the bleomycin plus epithelial disruption group at 3 weeks. Elevated levels of the profibrotic genes Acta2, Col1a1, and Col3a were exclusively detected in this group at 3 weeks, and trichrome staining confirmed increased collagen content after 3 weeks. Both average hyaluronan (HA) size and mass distribution were increased 3 weeks after bleomycin plus epithelial disruption with return to baseline by 6 weeks. Epithelial disruption combined with bleomycin induces murine vaginal fibrosis within three weeks, characterized by increased collagen synthesis. The vaginal tissue fully recovers within six weeks, elucidating the regenerative capacity of the vagina.

References

[1]  Ashton-Miller, J.A. and DeLancey, J.O.L. (2009) On the Biomechanics of Vaginal Birth and Common Sequelae. Annual Review of Biomedical Engineering, 11, 163-176.
https://doi.org/10.1146/annurev-bioeng-061008-124823

[2]  Yang, X., Rossi, P., Bruner, D.W., Tridandapani, S., Shelton, J. and Liu, T. (2013) Noninvasive Evaluation of Vaginal Fibrosis Following Radiotherapy for Gynecologic Malignancies: A Feasibility Study with Ultrasound B-Mode and Nakagami Parameter Imaging. Medical Physics, 40, Article ID: 022901.
https://doi.org/10.1118/1.4773872

[3]  McCracken, J.M., Balaji, S., Keswani, S.G. and Hakim, J.C. (2021) An Avant-Garde Model of Injury-Induced Regenerative Vaginal Wound Healing. Advances in Wound Care, 10, 165-173.
https://doi.org/10.1089/wound.2020.1198

[4]  Varytė, G. and Bartkevičienė, D. (2021) Pelvic Radiation Therapy Induced Vaginal Stenosis: A Review of Current Modalities and Recent Treatment Advances. Medicina, 57, Article 336.
https://doi.org/10.3390/medicina57040336

[5]  McCracken, J.M., Rauzan, B.M., Kjellman, J.C.E., Kandel, M.E., Liu, Y.H., Badea, A., et al. (2018) 3D-Printed Hydrogel Composites for Predictive Temporal (4D) Cellular Organizations and Patterned Biogenic Mineralization. Advanced Healthcare Materials, 8, Article ID: 1800788.
https://doi.org/10.1002/adhm.201800788

[6]  Shamskhou, E.A., Kratochvil, M.J., Orcholski, M.E., Nagy, N., Kaber, G., Steen, E., et al. (2019) Hydrogel-based Delivery of Il-10 Improves Treatment of Bleomycin-Induced Lung Fibrosis in Mice. Biomaterials, 203, 52-62.
https://doi.org/10.1016/j.biomaterials.2019.02.017

[7]  Działo, E., Rudnik, M., Koning, R., Czepiel, M., Tkacz, K., Baj-Krzyworzeka, M., et al. (2019) WNT3a and WNT5a Transported by Exosomes Activate WNT Signaling Pathways in Human Cardiac Fibroblasts. International Journal of Molecular Sciences, 20, Article 1436.
https://doi.org/10.3390/ijms20061436

[8]  Izbicki, G., Segel, M.J., Christensen, T.G., Conner, M.W. and Breuer, R. (2002) Time Course of Bleomycin-Induced Lung Fibrosis. International Journal of Experimental Pathology, 83, 111-119.
https://doi.org/10.1046/j.1365-2613.2002.00220.x

[9]  Hillel, A.T., Namba, D., Ding, D., Pandian, V., Elisseeff, J.H. and Horton, M.R. (2014) An in Situ, in Vivo Murine Model for the Study of Laryngotracheal Stenosis. JAMA OtolaryngologyHead & Neck Surgery, 140, 961-966.
https://doi.org/10.1001/jamaoto.2014.1663

[10]  Song, S., Fu, Z., Guan, R., Zhao, J., Yang, P., Li, Y., et al. (2021) Intracellular Hydroxyproline Imprinting Following Resolution of Bleomycin-Induced Pulmonary Fibrosis. European Respiratory Journal, 59, Article ID: 2100864.
https://doi.org/10.1183/13993003.00864-2021

[11]  Yano, J. and Fidel, Jr., P.L. (2011) Protocols for Vaginal Inoculation and Sample Collection in the Experimental Mouse Model of candida Vaginitis. Journal of Visualized Experiments, 58, e3382.
https://doi.org/10.3791/3382

[12]  McCracken, J.M., Calderon, G.A., Le, Q.N., Faruqui, N.M., Balaji, S. and Hakim, J.C.E. (2023) Cellular and Extracellular Vaginal Changes Following Murine Ovarian Removal. Physiological Reports, 11, e15762.
https://doi.org/10.14814/phy2.15762

[13]  Amargant, F., Manuel, S.L., Tu, Q., Parkes, W.S., Rivas, F., Zhou, L.T., et al. (2020) Ovarian Stiffness Increases with Age in the Mammalian Ovary and Depends on Collagen and Hyaluronan Matrices. Aging Cell, 19, e13259.
https://doi.org/10.1111/acel.13259

[14]  Rivas, F., Zahid, O.K., Reesink, H.L., Peal, B.T., Nixon, A.J., DeAngelis, P.L., et al. (2018) Label-Free Analysis of Physiological Hyaluronan Size Distribution with a Solid-State Nanopore Sensor. Nature Communications, 9, Article No. 1037.
https://doi.org/10.1038/s41467-018-03439-x

[15]  Rivas, F., DeAngelis, P.L., Rahbar, E. and Hall, A.R. (2022) Optimizing the Sensitivity and Resolution of Hyaluronan Analysis with Solid-State Nanopores. Scientific Reports, 12, Article No. 4469.
https://doi.org/10.1038/s41598-022-08533-1

[16]  Kim, D.H., Beckett, J.D., Nagpal, V., Seman-Senderos, M.A., Gould, R.A., Creamer, T.J., et al. (2019) Calpain 9 as a Therapeutic Target in TGFβ-Induced Mesenchymal Transition and Fibrosis. Science Translational Medicine, 11, eaau2814.
https://doi.org/10.1126/scitranslmed.aau2814

[17]  Zhang, L., Cheng, S., Jiang, X., Zhang, J., Meng, P., Tang, Q., et al. (2019) Pregnancy Exposure to Carbon Black Nanoparticles Exacerbates Bleomycin-Induced Lung Fibrosis in Offspring via Disrupting LKB1-AMPK-ULK1 Axis-Mediated Autophagy. Toxicology, 425, Article ID: 152244.
https://doi.org/10.1016/j.tox.2019.152244

[18]  Hillel, A.T., Samad, I., Ma, G., Ding, D., Sadtler, K., Powell, J.D., et al. (2015) Dysregulated Macrophages Are Present in Bleomycin-Induced Murine Laryngotracheal Stenosis. OtolaryngologyHead and Neck Surgery, 153, 244-250.
https://doi.org/10.1177/0194599815589106

[19]  Wynn, T. (2007) Cellular and Molecular Mechanisms of Fibrosis. The Journal of Pathology, 214, 199-210.
https://doi.org/10.1002/path.2277

[20]  Wynn, T. and Barron, L. (2010) Macrophages: Master Regulators of Inflammation and Fibrosis. Seminars in Liver Disease, 30, 245-257.
https://doi.org/10.1055/s-0030-1255354

[21]  Iijima, N., Linehan, M.M., Zamora, M., Butkus, D., Dunn, R., Kehry, M.R., et al. (2008) Dendritic Cells and B Cells Maximize Mucosal Th1 Memory Response to Herpes Simplex Virus. The Journal of Experimental Medicine, 205, 3041-3052.
https://doi.org/10.1084/jem.20082039

[22]  Garantziotis, S. and Savani, R.C. (2019) Hyaluronan Biology: A Complex Balancing Act of Structure, Function, Location and Context. Matrix Biology, 78, 1-10.
https://doi.org/10.1016/j.matbio.2019.02.002

[23]  Garantziotis, S., Hollingsworth, J.W., Ghanayem, R.B., Timberlake, S., Zhuo, L., Kimata, K., et al. (2007) Inter-α-Trypsin Inhibitor Attenuates Complement Activation and Complement-Induced Lung Injury. The Journal of Immunology, 179, 4187-4192.
https://doi.org/10.4049/jimmunol.179.6.4187

[24]  Patel, V.N., Pineda, D.L. and Hoffman, M.P. (2017) The Function of Heparan Sulfate during Branching Morphogenesis. Matrix Biology, 57, 311-323.
https://doi.org/10.1016/j.matbio.2016.09.004

[25]  Ramos-Lewis, W. and Page-McCaw, A. (2019) Basement Membrane Mechanics Shape Development: Lessons from the Fly. Matrix Biology, 75, 72-81.
https://doi.org/10.1016/j.matbio.2018.04.004

[26]  Jiang, D., Liang, J. and Noble, P.W. (2011) Hyaluronan as an Immune Regulator in Human Diseases. Physiological Reviews, 91, 221-264.
https://doi.org/10.1152/physrev.00052.2009

[27]  Balazs, E.A. and Denlinger, J.L. (1989) Clinical Uses of Hyaluronan. In: Evered, D. and Whelan, J., Eds., Ciba Foundation Symposium, Wiley, 265-285.
https://doi.org/10.1002/9780470513774.ch16

[28]  Volpi, N., Schiller, J., Stern, R. and Soltes, L. (2009) Role, Metabolism, Chemical Modifications and Applications of Hyaluronan. Current Medicinal Chemistry, 16, 1718-1745.
https://doi.org/10.2174/092986709788186138

[29]  Gaffney, J., Matou-Nasri, S., Grau-Olivares, M. and Slevin, M. (2010) Therapeutic Applications of Hyaluronan. Molecular BioSystems, 6, 437-443.
https://doi.org/10.1039/b910552m

[30]  Prestwich, G.D. (2011) Hyaluronic Acid-Based Clinical Biomaterials Derived for Cell and Molecule Delivery in Regenerative Medicine. Journal of Controlled Release, 155, 193-199.
https://doi.org/10.1016/j.jconrel.2011.04.007

[31]  Jiang, D., Liang, J. and Noble, P.W. (2007) Hyaluronan in Tissue Injury and Repair. Annual Review of Cell and Developmental Biology, 23, 435-461.
https://doi.org/10.1146/annurev.cellbio.23.090506.123337

[32]  West, D.C., Shaw, D.M., Lorenz, P., Adzick, N.S. and Longaker, M.T. (1997) Fibrotic Healing of Adult and Late Gestation Fetal Wounds Correlates with Increased Hyaluronidase Activity and Removal of Hyaluronan. The International Journal of Biochemistry & Cell Biology, 29, 201-210.
https://doi.org/10.1016/s1357-2725(96)00133-1

[33]  Wijeratne, D., Gibson, J.F.E., Fiander, A., Rafii‐Tabar, E. and Thakar, R. (2023) The Global Burden of Disease Due to Benign Gynecological Conditions: A Call to Action. International Journal of Gynecology & Obstetrics, 164, 1151-1159.
https://doi.org/10.1002/ijgo.15211

[34]  Nappi, R.E., Martini, E., Cucinella, L., Martella, S., Tiranini, L., Inzoli, A., et al. (2019) Addressing Vulvovaginal Atrophy (VVA)/Genitourinary Syndrome of Menopause (GSM) for Healthy Aging in Women. Frontiers in Endocrinology, 10, Article 561.
https://doi.org/10.3389/fendo.2019.00561

[35]  Kirchheiner, K., Fidarova, E., Nout, R.A., Schmid, M.P., Sturdza, A., Wiebe, E., et al. (2012) Radiation-Induced Morphological Changes in the Vagina. Strahlentherapie und Onkologie, 188, 1010-1019.
https://doi.org/10.1007/s00066-012-0222-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133