|
准噶尔盆地大有3井区井井子沟组储层水敏机理分析
|
Abstract:
针对准噶尔盆地大有3井区井井子沟组储层非均质强、具有潜在水敏性及压裂开发整体产油效果不佳的问题,弄清该区块储层水敏作用机理为选择合适工作液提供指导显得尤为重要。本文开展水岩作用实验、岩石力学特性分析,根据水岩作用垮塌程度将岩样分为三类:不垮塌(I类)、缓速垮塌(II类)和快速垮塌(III类),II类和III类岩样均属于软岩范畴。针对三类典型岩样开展了岩样矿物组成及含量分析、岩样微观结构分析及可溶盐分析等,实验结果表明:(1) 黏土矿物总含量高(伊蒙混层含量高,且蒙脱石占比高)是引起水敏的根本;(2) 胶结疏松、以粒间溶孔为主或构造缝发育、填隙物中(铁)泥质含量高且可溶盐含量高等与岩样垮塌程度呈正相关,对于III类岩样快速崩解分析认为是多重因素耦合作用造成。
For the problems of strong heterogeneity, potential water sensitivity and poor overall oil production effect of fracturing development in the formation in Dayou-3 well block of Junggar basin, it is particularly important to clarify the reservoir water sensitivity mechanism in this block to provide guidance for selecting appropriate working fluid. In this paper, laboratory experiment of water-rock interaction and analysis of rock mechanical property were carried out. According to the collapse degree of water rock interaction, the rock samples are divided into three categories: not collapsed (Class I), slowly collapsed (Class II) and rapidly collapsed (Class III). Both Class II and Class III rock samples belong to the category of soft rock. Through the analysis of mineral composition and content, microstructure and soluble salt of rock samples for three types of typical rock samples, the experimental results show that (1) The high total content of clay minerals (high content of montmorillonite mixed layer and high proportion of montmorillonite) is the fundamental cause of water sensitivity; (2) The degree of rock collapse is positively correlated with loose cementation, mainly intergranular dissolved pores or developed structural fractures, high content of (iron) mud and soluble salts in the filling material. For the rapid disintegration analysis of Class III rock samples, it is believed to be caused by the coupling effect of multiple factors.
[1] | 冯启言, 韩宝平, 隋旺华. 鲁西南地区红层软岩水岩作用特征与工程应用[J]. 工程地质学报, 1999, 7(3): 266-271. |
[2] | 杨春和, 冒海军, 王学潮, 等. 板岩遇水软化的微观结构及力学特性研究[J]. 岩土力学, 2006, 27(12): 2090-2098. |
[3] | 郑明雄. 澜沧老厂铅矿凝灰岩膨胀垮塌机制及防塌钻井液研究[D]: [博士学位论文]. 昆明: 昆明理工大学, 2013. |
[4] | 姜德义, 张军伟, 陈结, 等. 岩盐储库建腔难溶夹层的软化规律研究[J]. 岩石力学与工程学报, 2014, 33(5): 865-873. |
[5] | 纪洪广, 蒋华, 宋朝阳, 等. 弱胶结砂岩遇水软化过程细观结构演化及断口形貌分析[J]. 煤炭学报, 2018, 43(4): 994-999. |
[6] | 赵福登. 兰州地铁深基坑红砂岩崩解特性试验研究与分析[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2020. |
[7] | Yoshinaka, R., Osada, M. and Tran, T.V. (1996) Deformation Behaviour of Soft Rocks during Consolidated-Undrained Cyclic Triaxial Testing. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 33, 557-572. https://doi.org/10.1016/0148-9062(96)00025-3 |
[8] | Martin, R.J., Noel, J.S., Boyd, P.J. and Price, R.H. (1997) Creep and Static Fatigue of Welded Tuff from Yucca Mountain, Nevada. International Journal of Rock Mechanics and Mining Sciences, 34, 190.e1-190.e17. https://doi.org/10.1016/s1365-1609(97)00179-2 |
[9] | Gray, M.B., Stamatakos, J.A., Ferrill, D.A. and Evans, M.A. (2005) Fault-Zone Deformation in Welded Tuffs at Yucca Mountain, Nevada, USA. Journal of Structural Geology, 27, 1873-1891. https://doi.org/10.1016/j.jsg.2005.01.018 |
[10] | Salve, R., Wang, J.S.Y. and Doughty, C. (2002) Liquid-release Tests in Unsaturated Fractured Welded Tuffs: I. Field Investigations. Journal of Hydrology, 256, 60-79. https://doi.org/10.1016/s0022-1694(01)00519-4 |
[11] | Topal, T. and Sözmen, B. (2003) Deterioration Mechanisms of Tuffs in Midas Monument. Engineering Geology, 68, 201-223. https://doi.org/10.1016/s0013-7952(02)00228-4 |
[12] | Chen, T.C., Yeung, M.R. and Mori, N. (2004) Effect of Water Saturation on Deterioration of Welded Tuff Due to Freeze-Thaw Action. Cold Regions Science and Technology, 38, 127-136. https://doi.org/10.1016/j.coldregions.2003.10.001 |
[13] | Ma, L. and Daemen, J.J.K. (2006) An Experimental Study on Creep of Welded Tuff. International Journal of Rock Mechanics and Mining Sciences, 43, 282-291. https://doi.org/10.1016/j.ijrmms.2005.07.002 |
[14] | 王剑, 周基贤, 刘明, 等. 准噶尔盆地盐北地区下井井子沟组储层敏感性形成机理及评价[J]. 非常规油气, 2018, 5(1): 28-34. |
[15] | 朱效嘉. 软岩的水理性质[J]. 矿业科学技术, 1996, 24(3): 46-50. |
[16] | 朱效嘉. 膨胀性软岩[J]. 矿业科学技术, 1997(1): 26-33. |
[17] | 胡玉, 邓华锋, 李建林, 等. 水-岩作用下砂岩微观结构变化特性及机理研究[J]. 防灾减灾工程学报, 2018, 38(2): 265-273, 281. |
[18] | 王瑞红, 王宇轩, 蒋昱州, 等. 水岩作用下裂隙岩体变形特性试验研究[J]. 水利水电技术, 2018, 49(5): 136-142. |
[19] | 刘鹤. 软岩崩解特性试验研究与分析[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2018. |
[20] | 宋朝阳, 纪洪广, 曾鹏, 等 西部典型弱胶结粗粒砂岩单轴压缩破坏的类相变特征研究[J]. 采矿与安全工程学报, 2020, 37(5): 1027-2036. |
[21] | 张嘉凡, 程树范, 王焕, 等. 西部弱胶结软岩微观结构及水理特性试验[J]. 煤田地质与勘探, 2020, 48(3): 116-121. |
[22] | 邓华锋, 原先凡, 李建林, 等. 浸泡作用下砂岩断裂力学特性及劣化机理[J]. 地球科学-中国地质大学学报, 2014, 39(1): 108-114. |