全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

mir-21-5p在多项恶性肿瘤中的机制及研究进展
The Mechanism and Research Progress of mir-21-5p in Multiple Malignant Tumors

DOI: 10.12677/acrem.2025.132018, PP. 113-119

Keywords: mir-21-5p,恶性肿瘤,靶向治疗,信号传导通路
mir-21-5p
, Malignant Tumors, Targeted Therapy, Signaling Pathways

Full-Text   Cite this paper   Add to My Lib

Abstract:

mir-21-5p作为一种微小RNA (microRNA),在生物学领域中具有极其重要的作用,它参与多种生物活动,代谢的过程。其中mir-21-5p在多种癌症的发生发展过程中表现尤为突出。所以使得其在癌症研究中极其关键,它与多种癌症的生物学行为——增殖,迁移,侵袭有着密切关系。目前已知的多种癌症中,如肺癌,胃癌等,均存在进展较快,发现较晚的情况。尽管各类靶向及免疫治疗手段较为成熟,但仍然无法改变患者因发现晚带来的愈后较差结果。所以,我们迫切地需要一种早期确诊标志物和相对应的靶向治疗或免疫治疗的治疗靶点,该标志物需要满足特异性高,敏感度高的特点。因此,探寻mir-21-5p通过相应的靶基因,调控相应的信号传导通路,最终影响肿瘤细胞的发生发展,本文就此进行综述。
mir-21-5p is a microRNA that plays a crucial role in biological processes and various metabolic activities. Its significance is particularly evident in the development and progression of multiple cancers, making it a critical focus in cancer research due to its close association with biological behaviors such as proliferation, migration, and invasion of cancer cells. Many known cancers, including lung cancer and gastric cancer, often progress rapidly and are diagnosed at later stages. Despite advancements in targeted and immunotherapy approaches, the prognosis for patients diagnosed late remains poor. Therefore, there is an urgent need for early diagnostic biomarkers and corresponding targets for targeted or immunotherapy, which should be highly specific and sensitive. This review explores how mir-21-5p regulates relevant signaling pathways through its target genes, ultimately influencing tumor cell development.

References

[1]  Bartel, D.P. (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116, 281-297.
https://doi.org/10.1016/s0092-8674(04)00045-5
[2]  Bueno, M.J. and Malumbres, M. (2011) MicroRNAs and the Cell Cycle. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1812, 592-601.
https://doi.org/10.1016/j.bbadis.2011.02.002
[3]  Hummel, R., Hussey, D.J. and Haier, J. (2010) MicroRNAs: Predictors and Modifiers of Chemo-and Radiotherapy in Different Tumour Types. European Journal of Cancer, 46, 298-311.
https://doi.org/10.1016/j.ejca.2009.10.027
[4]  Hao, J.P. and Ma, A. (2018) The Ratio of miR-21/miR-24 as a Promising Diagnostic and Poor Prognosis Biomarker in Colorectal Cancer. European Review for Medical and Pharmacological Sciences, 22, 8649-8656.
[5]  Tsukamoto, M., Iinuma, H., Yagi, T., Matsuda, K. and Hashiguchi, Y. (2017) Circulating Exosomal MicroRNA-21 as a Biomarker in Each Tumor Stage of Colorectal Cancer. Oncology, 92, 360-370.
https://doi.org/10.1159/000463387
[6]  Liu, H., Wang, J., Tao, Y., Li, X., Qin, J., Bai, Z., et al. (2019) Curcumol Inhibits Colorectal Cancer Proliferation by Targeting miR-21 and Modulated PTEN/PI3K/Akt Pathways. Life Sciences, 221, 354-361.
https://doi.org/10.1016/j.lfs.2019.02.049
[7]  Xiong, B., Cheng, Y., Ma, L. and Zhang, C. (2012) MiR-21 Regulates Biological Behavior through the PTEN/PI-3K/Akt Signaling Pathway in Human Colorectal Cancer Cells. International Journal of Oncology, 42, 219-228.
https://doi.org/10.3892/ijo.2012.1707
[8]  郭美, 王兵, 周恒花, 等. 结肠癌组织miR-21与PDCD4的表达情况及临床意义[J]. 重庆医学, 2022, 51(6): 1011-1014.
[9]  American Cancer Society (2020) Colorectal Cancer Facts & Figures 2020-2022. Atlanta American Cancer Society, Vol. 66, 1-41.
[10]  Denlinger, C.S. and Barsevick, A.M. (2009) The Challenges of Colorectal Cancer Survivorship. Journal of the National Comprehensive Cancer Network, 7, 883-894.
https://doi.org/10.6004/jnccn.2009.0058
[11]  Peng, Y., Huang, M. and Kao, C. (2019) Prevalence of Depression and Anxiety in Colorectal Cancer Patients: A Literature Review. International Journal of Environmental Research and Public Health, 16, Article No. 411.
https://doi.org/10.3390/ijerph16030411
[12]  Jiang, R., Chen, X., Ge, S., Wang, Q., Liu, Y., Chen, H., et al. (2021) MiR-21-5p Induces Pyroptosis in Colorectal Cancer via TGFBI. Frontiers in Oncology, 10, Article ID: 610545.
https://doi.org/10.3389/fonc.2020.610545
[13]  胡晓舒, 温一阳, 杨金花. PTENP1对结直肠癌细胞增殖和凋亡的影响及其分子机制[J]. 肿瘤防治研究, 2022, 49(3): 192-196.
[14]  杜静虎, 陈满宇, 王东华, 等. ZNF521促进结肠癌的进展且受miR-211-5p靶向调控[J]. 临床与病理杂志, 2021, 41(6): 1237-1247.
[15]  Huang, S.X., Fan, W.Y., Wang, L., Liu, H., Wang, X., Zhao, H. and Jiang, W.B. (2020) Maspin Inhibits MCF-7 Cell Invasion and Proliferation by Downregulating miR-21 and Increasing the Expression of Its Target Genes. Oncology Letters, 19, 2621-2628.
[16]  王卫卫, 邢文韬, 魏思忱, 等. miR-21靶向调控Bcl-2对肠道上皮HT29细胞凋亡的影响及机制研究[J]. 中国免疫学杂志, 2019, 35(20): 2457-2463.
[17]  胡立宏, 潘雪峰, 关佳恒, 等. 结直肠癌患者血清miR-21-5p、miR-377-3p表达与Wnt/β-Catenin信号通路和预后的关系分析[J]. 疑难病杂志, 2023, 22(4): 383-389.
[18]  Bian, J., Dannappel, M., Wan, C. and Firestein, R. (2020) Transcriptional Regulation of Wnt/β-Catenin Pathway in Colorectal Cancer. Cells, 9, Article No. 2125.
https://doi.org/10.3390/cells9092125
[19]  Huber, A.H., Nelson, W.J. and Weis, W.I. (1997) Three-Dimensional Structure of the Armadillo Repeat Region of β-Catenin. Cell, 90, 871-882.
https://doi.org/10.1016/s0092-8674(00)80352-9
[20]  Liu, C., Li, Y., Semenov, M., Han, C., Baeg, G., Tan, Y., et al. (2002) Control of β-Catenin Phosphorylation/Degradation by a Dual-Kinase Mechanism. Cell, 108, 837-847.
https://doi.org/10.1016/s0092-8674(02)00685-2
[21]  Aberle, H., Bauer, A., Stappert, J., Kispert, A. and Kemler, R. (1997) β-Catenin Is a Target for the Ubiquitin-Proteasome Pathway. The EMBO Journal, 16, 3797-3804.
https://doi.org/10.1093/emboj/16.13.3797
[22]  Hart, M., Concordet, J., Lassot, I., Albert, I., del los Santos, R., Durand, H., et al. (1999) The F-Box Protein beta-TrCP Associates with Phosphorylated β-Catenin and Regulates Its Activity in the Cell. Current Biology, 9, 207-211.
https://doi.org/10.1016/s0960-9822(99)80091-8
[23]  Wu, G., Huang, H., Abreu, J.G. and He, X. (2009) Inhibition of GSK3 Phosphorylation of β-Catenin via Phosphorylated PPPSPXS Motifs of Wnt Coreceptor LRP6. PLoS ONE, 4, e4926.
https://doi.org/10.1371/journal.pone.0004926
[24]  Cselenyi, C.S., Jernigan, K.K., Tahinci, E., Thorne, C.A., Lee, L.A. and Lee, E. (2008) LRP6 Transduces a Canonical Wnt Signal Independently of Axin Degradation by Inhibiting GSK3’s Phosphorylation of β-Catenin. Proceedings of the National Academy of Sciences, 105, 8032-8037.
https://doi.org/10.1073/pnas.0803025105
[25]  Piao, S., Lee, S., Kim, H., Yum, S., Stamos, J.L., Xu, Y., et al. (2008) Direct Inhibition of Gsk3β by the Phosphorylated Cytoplasmic Domain of LRP6 in Wnt/β-Catenin Signaling. PLoS ONE, 3, e4046.
https://doi.org/10.1371/journal.pone.0004046
[26]  Kim, S., Huang, H., Zhao, M., Zhang, X., Zhang, A., Semonov, M.V., et al. (2013) Wnt Stabilization of β-Catenin Reveals Principles for Morphogen Receptor-Scaffold Assemblies. Science, 340, 867-870.
https://doi.org/10.1126/science.1232389
[27]  He, Q., Ye, A., Ye, W., Liao, X., Qin, G., Xu, Y., et al. (2021) Cancer-Secreted Exosomal miR-21-5p Induces Angiogenesis and Vascular Permeability by Targeting KRIT1. Cell Death & Disease, 12, Article No. 576.
https://doi.org/10.1038/s41419-021-03803-8
[28]  Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249.
https://doi.org/10.3322/caac.21660
[29]  Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33.
https://doi.org/10.3322/caac.21708
[30]  Ginsburg, O., Yip, C., Brooks, A., Cabanes, A., Caleffi, M., Dunstan Yataco, J.A., et al. (2020) Breast Cancer Early Detection: A Phased Approach to Implementation. Cancer, 126, 2379-2393.
https://doi.org/10.1002/cncr.32887
[31]  Wang, L. (2017) Early Diagnosis of Breast Cancer. Sensors, 17, Article No. 1572.
https://doi.org/10.3390/s17071572
[32]  Liu, M., Mo, F., Song, X., He, Y., Yuan, Y., Yan, J., et al. (2021) Exosomal Hsa-Mir-21-5p Is a Biomarker for Breast Cancer Diagnosis. PeerJ, 9, e12147.
https://doi.org/10.7717/peerj.12147
[33]  Nejaddehghan, S., Zargar, S.J., Oloomi, M., Baesi, K. and Kouhsar, M. (2024) Inhibition of miR-21-5p Affects the Expression of LNCRNA X-Inactive Specific Transcript and Induces Apoptosis in MCF-7 Breast Cancer Cells. Iranian Journal of Public Health, 53, 714-725.
[34]  孙方正. miR-21-5p调控乳腺癌MCF-7细胞增殖的分子机理研究[D]: [硕士学位论文]. 遵义: 遵义医科大学, 2021.
[35]  马小兰, 王娟, 石斌, 等. hnRNPK调控Wnt/β-Catenin信号转导通路抑制乳腺癌细胞铁死亡[J]. 中国癌症杂志, 2024, 34(10): 931-943.
[36]  Duma, N., Santana-Davila, R. and Molina, J.R. (2019) Non-Small Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clinic Proceedings, 94, 1623-1640.
https://doi.org/10.1016/j.mayocp.2019.01.013
[37]  Forde, P.M., Spicer, J., Lu, S., Provencio, M., Mitsudomi, T., Awad, M.M., et al. (2022) Neoadjuvant Nivolumab plus Chemotherapy in Resectable Lung Cancer. New England Journal of Medicine, 386, 1973-1985.
https://doi.org/10.1056/nejmoa2202170
[38]  Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[39]  Jin, G., Lv, J., Yang, M., Wang, M., Zhu, M., Wang, T., et al. (2020) Genetic Risk, Incident Gastric Cancer, and Healthy Lifestyle: A Meta-Analysis of Genome-Wide Association Studies and Prospective Cohort Study. The Lancet Oncology, 21, 1378-1386.
https://doi.org/10.1016/s1470-2045(20)30460-5
[40]  Petryszyn, P., Chapelle, N. and Matysiak-Budnik, T. (2020) Gastric Cancer: Where Are We Heading? Digestive Diseases, 38, 280-285.
https://doi.org/10.1159/000506509
[41]  赵志东, 郇金亮, 汤文俊, 等. hsa-miR-21-5p/ZNF367分子轴通过PI3K/Akt通路影响胃癌细胞的增殖和迁移[J]. 中国医药生物技术, 2020, 15(3): 269-276.
[42]  徐珂. miR-21-5p经Wnt/β-Catenin通路调控EMT影响口腔鳞癌细胞生物学行为的机制研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2024.
[43]  胡兆勇, 谭劲, 陈明, 等. miR-21-5p在口腔黏膜下纤维化癌变细胞中的表达及生物信息学分析[J]. 中国医药导报, 2021, 18(31): 34-36+41+198.
[44]  焦叶林. 牙龈卟啉单胞菌通过激活YAP/TAZ诱导miR-21-5p/PTEN/自噬促进食管鳞癌演进[D]: [硕士学位论文]. 洛阳: 河南科技大学, 2020.
[45]  唐秦超. 中性粒细胞源性外泌体传递miRNA-21-5p靶向抑制CPEB3促进口腔鳞癌进展的机制研究[D]: [硕士学位论文]. 南宁: 广西医科大学, 2021.
[46]  Xie, H., Jing, R., Liao, X., Chen, H., Xie, X., Dai, H., et al. (2022) Arecoline Promotes Proliferation and Migration of Human Hepg2 Cells through Activation of the PI3K/AKT/mTOR Pathway. Hereditas, 159, Article No. 29.
https://doi.org/10.1186/s41065-022-00241-0
[47]  Zhang, X., Wang, W., Mo, S. and Sun, X. (2024) Dead-Box Helicase 17 circRNA (circDDX17) Reduces Sorafenib Resistance and Tumorigenesis in Hepatocellular Carcinoma. Digestive Diseases and Sciences, 69, 2096-2108.
https://doi.org/10.1007/s10620-024-08401-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133