|
物联网技术在微缩模型天气模拟控制器中的集成与优化分析
|
Abstract:
为应对传统微缩模型天气模拟控制器中天气效果模拟的高人工成本、材料浪费和操作不便等问题,本项目采用物联网技术,基于STM32单片机与集成电路控制板,结合Python和C语言进行编程,并利用MQTT通讯协议实现手机端远程控制,能够更好地模拟多种天气效果并实时调控。与传统微缩模型天气模拟控制器相比,物联网技术的应用使微缩模型天气模拟控制器在资源利用率和操作便利性方面提升较大,从结果上看,采用物联网技术的微缩模型天气模拟控制器在集成与优化方面对比传统方式具有显著优势。
In order to deal with the problems of high labor cost, material waste and inconvenience of weather effect simulation in the traditional micro-model weather simulation controller, the project adopts Internet of Things technology, based on STM32 single-chip microcomputer and integrated circuit control board, combined with Python and C language, and uses MQTT communication protocol to realize remote control on the mobile side. It can better simulate various weather effects and control in real time. Compared with the traditional micro model weather simulation controller, the application of the Internet of Things technology has greatly improved the micro model weather simulation controller in terms of resource utilization and operation convenience. From the result, the micro model weather simulation controller using the Internet of Things technology has significant advantages in integration and optimization.
[1] | 王明迪, 刘旭. 基于机器学习的天气预测模型研究[J]. 数据科学与工程, 2019, 7(4): 45-51. |
[2] | 王磊, 陈芳. 基于物联网的智能天气监测系统研究[J]. 电子科技, 2022, 35(5): 56-62. |
[3] | 李华, 丁伟. 数据融合技术在气象监测中的应用[J]. 计算机与应用化学, 2021, 38(6): 102-108. |
[4] | Dolev, S. and Amitai, G. (2023) IoT-Based Climate Control in Agricultural Simulation Systems. Journal of Agricultural Engineering, 45, 158-165. |
[5] | 张雷, 王涛. 物联网在农业气候模拟系统中的应用研究[J]. 中国农业工程学报, 2024, 40(5): 202-210. |
[6] | 孙丽, 周海. 物联网技术在气象领域的应用研究[J]. 气象科学, 2023, 43(1): 34-40. |
[7] | 何俊, 张婷. 基于STM32的气象监测系统设计[J]. 自动化技术与应用, 2022, 41(3): 47-52. |
[8] | 陈志, 吴敏. 模型预测控制在气象模拟中的应用研究[J]. 控制与决策, 2023, 38(2): 75-80. |
[9] | Wilson, M. and Clark, D. (2023) Smart Weather Simulation: Leveraging IoT Technologies. International Journal of Meteorology, 12, 27-35. |
[10] | Thompson, A. and Lewis, K. (2020) Enhancing Weather Models with IoT Data: A Review. Weather and Climate Extremes, 28, Article ID: 100226. |
[11] | Roberts, H. and Green, T. (2021) Machine Learning in Weather Simulation: Current Trends. Computers & Geosciences, 147, Article ID: 104661. |