全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于热传导方程的自适应损失物理信息神经网络算法研究
Study on Self-Adaptive Loss Physical Information Neural Network Algorithm Based on Heat Transfer Equation

DOI: 10.12677/mp.2025.152003, PP. 21-28

Keywords: 热传导方程,物理信息神经网络,自适应损失平衡法
Heat Transfer Equation
, Physical Information Neural Network, Adaptive Loss Balance Method

Full-Text   Cite this paper   Add to My Lib

Abstract:

在热传导方程的研究中,物理信息神经网络(PINN)的应用已初显成效,其损失函数由多个损失项的加权和组成,这些损失项的加权组合对PINN的有效训练具有关键作用。为此,我们引入了一个基于高斯概率模型的损失项定义,通过噪声参数来描述每个损失项的权重,并提出了一种基于极大似然估计原理的自适应损失函数方法,该方法通过不断更新每个训练周期中的噪声参数,实现损失权重的自动分配。采用自适应物理信息神经网络(SalPINN)对一维瞬态热传导方程进行求解,并与传统PINN方法对比,结果显示SalPINN在模拟热传导方程方面表现出更高的精确性和有效性。
In the field of research into heat transfer equations, the application of physical information neural network (PINN) has achieved some results. The loss function of PINN consists of a weighted sum of multiple loss terms, and the weighted combination of these loss terms plays an important role in PINN’s effective training. Therefore, we construct a loss term definition based on a Gaussian probability model, where the introduction of noise parameters is used to describe the weight of each loss term. We propose a self-adaptive loss function method based on the maximum likelihood estimation principle to automatically assign loss weights by constantly updating noise parameters in each training cycle. Then, we use self-adaptive loss physical information neural network (SalPINN) to solve the one-dimensional transient heat transfer equation, and compare it with the traditional PINN method, and the results show that SalPINN is more accurate and effective in simulating the heat transfer equation.

References

[1]  Raissi, M., Perdikaris, P. and Karniadakis, G.E. (2019) Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. Journal of Computational Physics, 378, 686-707.
https://doi.org/10.1016/j.jcp.2018.10.045
[2]  Jagtap, A.D., Kharazmi, E. and Karniadakis, G.E. (2020) Conservative Physics-Informed Neural Networks on Discrete Domains for Conservation Laws: Applications to Forward and Inverse Problems. Computer Methods in Applied Mechanics and Engineering, 365, Article ID: 113028.
https://doi.org/10.1016/j.cma.2020.113028
[3]  Pu, J., Li, J. and Chen, Y. (2021) Solving Localized Wave Solutions of the Derivative Nonlinear Schrödinger Equation Using an Improved PINN Method. Nonlinear Dynamics, 105, 1723-1739.
https://doi.org/10.1007/s11071-021-06554-5
[4]  Kadeethum, T., Jørgensen, T.M. and Nick, H.M. (2020) Physics-Informed Neural Networks for Solving Nonlinear Diffusivity and Biot’s Equations. PLOS ONE, 15, e0232683.
https://doi.org/10.1371/journal.pone.0232683
[5]  Lagergren, J.H., Nardini, J.T., Baker, R.E., Simpson, M.J. and Flores, K.B. (2020) Biologically-Informed Neural Networks Guide Mechanistic Modeling from Sparse Experimental Data. PLOS Computational Biology, 16, e1008462.
https://doi.org/10.1371/journal.pcbi.1008462
[6]  Cipolla, R., Gal, Y. and Kendall, A. (2018) Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-23 June 2018, 7482-7491.
https://doi.org/10.1109/cvpr.2018.00781
[7]  张焕, 张庆, 于纪言. 激活函数的发展综述及其性质分析[J]. 西华大学学报(自然科学版), 2021, 40(4): 1-10.
[8]  Sharma, S., Sharma, S. and Athaiya, A. (2020) Activation Functions in Neural Networks. International Journal of Engineering Applied Sciences and Technology, 4, 310-316.
https://doi.org/10.33564/ijeast.2020.v04i12.054
[9]  张海斌, 薛毅. 自动微分的基本思想与实现[J]. 北京工业大学学报, 2005, 31(3): 332-336.
[10]  Givoli, D. (1991) Non-Reflecting Boundary Conditions. Journal of Computational Physics, 94, 1-29.
https://doi.org/10.1016/0021-9991(91)90135-8
[11]  Abdolrasol, M.G.M., Hussain, S.M.S., Ustun, T.S., Sarker, M.R., Hannan, M.A., Mohamed, R., et al. (2021) Artificial Neural Networks Based Optimization Techniques: A Review. Electronics, 10, Article 2689.
https://doi.org/10.3390/electronics10212689

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133