全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

用于求解多块可分凸优化问题的惯性临近严格收缩PRSM
Inertial Proximal Strictly Contractive PRSM for Solving Multi-Block Separable Convex Optimization

DOI: 10.12677/pm.2025.153094, PP. 203-218

Keywords: 凸优化,Peaceman-Rachford Splitting Method,惯性临近点方法,变分不等式,全局收敛性
Convex Optimization
, Peaceman-Rachford Splitting Method, Inertial Proximal Point Method, Variational Inequality, Global Convergence

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,PRSM成为了处理具有线性约束的两部分可分凸优化问题的一个热门研究方向。本研究聚焦于目标函数由三个解耦变量函数之和构成的可分凸优化问题。单纯地运用PRSM可能无法保证其收敛性。因此,我们引入了一种带有惯性项和临近项的严格收缩PRSM。借助变分不等式、临近点算法以及基本不等式,我们对所提出的方法进行了全局收敛性的分析。此外,我们将这种新方法应用于鲁棒主成分分析(PCA)问题的求解,并提供了一些初步的数值结果,用以展示该方法的可行性和有效性。
In recent years, PRSM has become a popular research direction for dealing with two-block separable convex optimization problems with linear constraints. This study focuses on separable convex optimization problems where the objective function is composed of the sum of three decoupled variable functions. Simply applying the PRSM may not guarantee its convergence. Therefore, we introduce a strictly contractive PRSM with inertial and proximal terms. By means of variational inequalities, the proximal point algorithm, and fundamental inequalities, we have analyzed the global convergence of the proposed method. In addition, we applied this new method to the solution of the Robust Principal Component Analysis (PCA) problem and provided some preliminary numerical results to demonstrate the feasibility and effectiveness of the method.

References

[1]  Peng, Y., Ganesh, A., Wright, J., et al. (2012) RASL: Robust Alignment by Sparse and Low-Rank Decomposition for Linearly Correlated Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34, 2233-2246.
https://doi.org/10.1109/tpami.2011.282
[2]  Yang, J. and Zhang, Y. (2011) Alternating Direction Algorithms for $\ell_1$-Problems in Compressive Sensing. SIAM Journal on Scientific Computing, 33, 250-278.
https://doi.org/10.1137/090777761
[3]  Bouwmans, T., Aybat, N.S. and Zahzah, E.H. (2016) Handbook of Robust Low-Rank and Sparse Matrix Decomposition: Applications in Image and Video Processing. CRC Press.
[4]  Boyd, S. (2010) Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Foundations and Trends in Machine Learning, 3, 1-122.
https://doi.org/10.1561/2200000016
[5]  Padcharoen, A., Kumam, P. and Martínez-Moreno, J. (2019) Augmented Lagrangian Method for Tv-l1-l2 Based Colour Image Restoration. Journal of Computational and Applied Mathematics, 354, 507-519.
https://doi.org/10.1016/j.cam.2018.09.053
[6]  Hestenes, M.R. (1969) Multiplier and Gradient Methods. Journal of Optimization Theory and Applications, 4, 303-320.
https://doi.org/10.1007/bf00927673
[7]  Powell, M.J.D. (1969) A Method for Nonlinear Constraints in Minimization Problems. In: Fletcher, R., Ed., Optimization, Academic Press, 283-298.
[8]  Douglas, J. and Rachford, H.H. (1956) On the Numerical Solution of Heat Conduction Problems in Two and Three Space Variables. Transactions of the American Mathematical Society, 82, 421-439.
https://doi.org/10.1090/s0002-9947-1956-0084194-4
[9]  Lions, P.L. and Mercier, B. (1979) Splitting Algorithms for the Sum of Two Nonlinear Operators. SIAM Journal on Numerical Analysis, 16, 964-979.
https://doi.org/10.1137/0716071
[10]  Gabay, D. and Mercier, B. (1976) A Dual Algorithm for the Solution of Nonlinear Variational Problems via Finite Element Approximation. Computers & Mathematics with Applications, 2, 17-40.
https://doi.org/10.1016/0898-1221(76)90003-1
[11]  Glowinski, R. and Marroco, A. (1975) Sur l’approximation, paréléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéaires. Revue française dautomatique, informatique, recherche opérationnelle. Analyse numérique, 9, 41-76.
https://doi.org/10.1051/m2an/197509r200411
[12]  Peaceman, D.W. and Rachford, Jr., H.H. (1955) The Numerical Solution of Parabolic and Elliptic Differential Equations. Journal of the Society for Industrial and Applied Mathematics, 3, 28-41.
https://doi.org/10.1137/0103003
[13]  Combettes, P.L. and Wajs, V.R. (2005) Signal Recovery by Proximal Forward-Backward Splitting. Multiscale Modeling & Simulation, 4, 1168-1200.
https://doi.org/10.1137/050626090
[14]  He, B., Liu, H., Wang, Z. and Yuan, X. (2014) A Strictly Contractive Peaceman—Rachford Splitting Method for Convex Programming. SIAM Journal on Optimization, 24, 1011-1040.
https://doi.org/10.1137/13090849x
[15]  Polyak, B.T. (1964) Some Methods of Speeding up the Convergence of Iteration Methods. USSR Computational Mathematics and Mathematical Physics, 4, 1-17.
https://doi.org/10.1016/0041-5553(64)90137-5
[16]  Wu, Z., Liu, F. and Li, M. (2018) A Proximal Peaceman-Rachford Splitting Method for Solving the Multi-Block Separable Convex Minimization Problems. International Journal of Computer Mathematics, 96, 708-728.
https://doi.org/10.1080/00207160.2018.1435864
[17]  Sun, M., Wang, Y. and Liu, J. (2016) Generalized Peaceman-Rachford Splitting Method for Multiple-Block Separable Convex Programming with Applications to Robust PCA. Calcolo, 54, 77-94.
https://doi.org/10.1007/s10092-016-0177-0
[18]  Li, P., Chen, W.G. and Sun, Q.Y. (2023) Inertial Proximal ADMM for Separable Multi-Block Convex Optimizations and Compressive Affine Phase Retrieval. Acta Mathematica Sinica, English Series, 39, 1459-1496.
https://doi.org/10.1007/s10114-023-1401-x
[19]  He, B., Tao, M. and Yuan, X. (2012) Alternating Direction Method with Gaussian Back Substitution for Separable Convex Programming. SIAM Journal on Optimization, 22, 313-340.
https://doi.org/10.1137/110822347
[20]  Tao, M. and Yuan, X. (2011) Recovering Low-Rank and Sparse Components of Matrices from Incomplete and Noisy Observations. SIAM Journal on Optimization, 21, 57-81.
https://doi.org/10.1137/100781894
[21]  Li, S., Li, K., Li, W. and Yang, M. (2024) Evolutionary Alternating Direction Method of Multipliers for Constrained Multi-Objective Optimization with Unknown Constraints. IEEE Transactions on Evolutionary Computation.
https://doi.org/10.1109/tevc.2024.3425629

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133