|
基于ARIMA-BiGRU模型的水质分类预测
|
Abstract:
本文聚焦于地表水水质分类预测,选取2018年至2024年间秦皇岛市戴河口监测点的水质数据,通过结合传统时间序列模型(ARIMA)和双向门控循环单元模型(BiGRU),系统评估了未来水质变化的预测性能。研究结果表明,两者的组合模型(ARIMA-BiGRU)进一步发挥了协同优势:先利用ARIMA提取序列的线性成分和周期性特征,再通过BiGRU对残差中的复杂非线性动态进行深度解析,从而实现对水质参数多层次时空关联的精准建模。相较于单一模型,ARIMA-BiGRU组合模型在短期和中期预测任务中均展现出更强的鲁棒性,对水质分类的预测误差显著降低。该模型不仅为水质预测提供了兼顾线性统计规律与深度特征挖掘的融合框架,其多尺度预测能力还可支持管理者制定从短期污染预警到长期生态治理的差异化决策方案,对提升水环境管理的科学性与前瞻性具有重要实践价值。
This study focuses on the classification prediction of surface water quality, utilizing water quality data from the Daihekou monitoring site in Qinhuangdao City between 2018 and 2024. By integrating the traditional time series model (ARIMA) and the bidirectional gated recurrent unit model (BiGRU) into a combined model (ARIMA-BiGRU), the predictive performance for future water quality changes is systematically evaluated. The results demonstrate that the ARIMA model effectively captures linear trends and seasonal patterns in water quality indicators through its differencing operations and autoregressive mechanisms. Meanwhile, the BiGRU model enhances nonlinear prediction accuracy by employing bidirectional temporal modeling, which integrates both historical and potential future information. The combined ARIMA-BiGRU model further leverages synergistic advantages: it first utilizes ARIMA to extract linear components and periodic features from the sequence, then employs BiGRU to deeply analyze the complex nonlinear dynamics within the residuals, achieving precise modeling of multi-level spatiotemporal correlations in water quality parameters. Compared to individual models, the ARIMA-BiGRU combined model exhibits stronger robustness in short- and medium-term prediction tasks, significantly reducing prediction errors in water quality classification. This model not only provides a hybrid framework that balances linear statistical principles and deep feature extraction for water quality forecasting but also supports differentiated decision-making plans—from short-term pollution alerts to long-term ecological management—through its multi-scale predictive capability. This approach holds significant practical value for enhancing the scientific rigor and forward-looking perspective of water environment management.
[1] | Streeter, H.W. and Phelps, E.B. (1925) A Study of Pollution and Natural Purification of the Ohio River. Public Health Bulletin, 13, 76-79. |
[2] | O’Connor, D.J. (1967) The Temporal and Spatial Distribution of Dissolved Oxygen in Streams. Water Resources Research, 3, 65-79. https://doi.org/10.1029/wr003i001p00065 |
[3] | 张晨, 王立义, 高英, 等. 引滦入津工程黎河段机理与非机理水质预测模型对比分析[J]. 安全与环境学报, 2011, 11(1): 149-152. |
[4] | Câmara, A.S. and Randall, C.W. (1984) The QUAL II Model. Journal of Environmental Engineering, 110, 993-996. https://doi.org/10.1061/(asce)0733-9372(1984)110:5(993) |
[5] | Song, W., Xu, Q., Fu, X., Wang, C., Pang, Y. and Song, D. (2019) EFDC Simulation of Fishway in the Diversion Dahaerteng River to Danghe Reservoir, China. Ecological Indicators, 102, 704-715. https://doi.org/10.1016/j.ecolind.2019.03.025 |
[6] | 王成杰, 张森. 基于主成分和粒子群优化支持向量机的水质评价模型[J]. 环境工程学报, 2014, 8(10): 4545-4549. |
[7] | 李霖, 王琨, 刘强, 等. 基于CNN的赣江水质时空规律分析与预测[C]//中国统计教育学会, 教育部高等学校统计学类专业教学指导委员会, 全国应用统计专业学位研究生教育指导委员会. 2021年(第七届)全国大学生统计建模大赛获奖论文集(二). 北京: 中国统计出版社, 2021: 26. |
[8] | Zhi, W., Feng, D., Tsai, W., Sterle, G., Harpold, A., Shen, C., et al. (2021) From Hydrometeorology to River Water Quality: Can a Deep Learning Model Predict Dissolved Oxygen at the Continental Scale? Environmental Science & Technology, 55, 2357-2368. https://doi.org/10.1021/acs.est.0c06783 |
[9] | 王昱文, 杜震洪, 戴震, 等. 基于复合神经网络的多元水质指标预测模型[J]. 浙江大学学报(理学版), 2022, 49(3): 354-362+375. |
[10] | Shi, B., Wang, P., Jiang, J. and Liu, R. (2018) Applying High-Frequency Surrogate Measurements and a Wavelet-ANN Model to Provide Early Warnings of Rapid Surface Water Quality Anomalies. Science of the Total Environment, 610, 1390-1399. https://doi.org/10.1016/j.scitotenv.2017.08.232 |
[11] | 郑淏, 薛惠锋, 冯海涛. 基于BP神经网络的地表水污染指标短期预测分析[J]. 陕西科技大学学报: 自然科学版, 2016, 34(3): 156-160. |
[12] | 周朝勉, 刘明萍, 王京威. 基于CNN-LSTM的水质预测模型研究[J]. 水电能源科学, 2021, 39(3): 20-23. |
[13] | 徐倩文. 基于GRU的水质数据预测[J]. 中国新通信, 2020, 22(22): 123-124. |
[14] | 韩旭, 段中兴, 尚旭东. 基于多头注意力机制和CNN-BiGRU模型的水质预测方法[C]//中国自动化学会. 2024中国自动化大会论文集. 2024: 6. |