全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类奇数阶4度非2-弧传递图的构造
A Construction of an Odd Order 4-Valent Non-2-Arc-Transitive Graph

DOI: 10.12677/pm.2025.153089, PP. 167-171

Keywords: 本原置换群,几乎单群,弧传递图
Primitive Permutation Group
, Almost Simple Group, Arc-Transitive Graph

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文是在图的阶为奇数,度数为4的条件下,通过分析图 Γ 的自同构群的子群及其点稳定子群的结构,特别是弧传递图的相关理论和基本性质,利用特定顶点和度数的群的作用和图的对称性等相关理论,进一步探讨了这类图的存在性和结构特征,给出了一类奇数阶4度非2-弧传递图的构造。
In this paper, under the condition of odd order and degree 4. By analyzing the structure of subgroups of the automorphism group of the graph and its point-stabilizer subgroups, especially relying on the relevant theories and basic properties of arc-transitive graphs, and making use of the group actions on specific vertices and degrees, as well as the theories related to the symmetry of the graph, the existence and structural characteristics of such graphs are further explored. A construction method for a class of odd-order 4-degree non-2-arc-transitive graphs is presented.

References

[1]  Weiss, R. (1981) The Nonexistence of 8-Transitive Graphs. Combinatorica, 1, 309-311.
https://doi.org/10.1007/bf02579337
[2]  Conder, M.D.E., Li, C.H. and Potočnik, P. (2015) On the Orders of Arc-Transitive Graphs. Journal of Algebra, 421, 167-186.
https://doi.org/10.1016/j.jalgebra.2014.08.025
[3]  Li, C.H., Lu, Z.P. and Zhang, H. (2006) Tetravalent Edge-Transitive Cayley Graphs with Odd Number of Vertices. Journal of Combinatorial Theory, Series B, 96, 164-181.
https://doi.org/10.1016/j.jctb.2005.07.003
[4]  Tutte, W.T. (1947) A Family of Cubical Graphs. Mathematical Proceedings of the Cambridge Philosophical Society, 43, 459-474.
https://doi.org/10.1017/s0305004100023720
[5]  Li, C.H., Lu, Z.P. and Wang, G. (2016) Arc-Transitive Graphs of Square-Free Order and Small Valency. Discrete Mathematics, 339, 2907-2918.
https://doi.org/10.1016/j.disc.2016.06.002
[6]  Li, C.H., Xia, B. and Zhou, S. (2021) An Explicit Characterization of Arc-Transitive Circulants. Journal of Combinatorial Theory, Series B, 150, 1-16.
https://doi.org/10.1016/j.jctb.2021.02.004
[7]  Praeger, C.E. and Xu, M.Y. (1993) Vertex-Primitive Graphs of Order a Product of Two Distinct Primes. Journal of Combinatorial Theory, Series B, 59, 245-266.
https://doi.org/10.1006/jctb.1993.1068
[8]  Li, C.H. (2001) The Finite Vertex-Primitive and Vertex-Biprimitive s-Transitive Graphs for s ≥ 4. Transactions of the American Mathematical Society, 353, 3511-3529.
https://doi.org/10.1090/s0002-9947-01-02768-4
[9]  Liao, H.C., Li, J.J. and Lu, Z.P. (2020) On Quasiprimitive Edge-Transitive Graphs of Odd Order and Twice Prime Valency. Journal of Group Theory, 23, 1017-1037.
https://doi.org/10.1515/jgth-2019-0091
[10]  Sabidussi, G. (1959) On the Minimum Order of Graphs with Given Automorphism Group. Monatshefte für Mathematik, 63, 124-127.
https://doi.org/10.1007/bf01299094
[11]  徐明曜. 有限群导引(下册) [M]. 北京: 科学出版社, 1999.
[12]  Gui Fang, X. and Praeger, C.E. (1999) Finite Two-Are Transitive Graphs Admitting a Ree Simple Group. Communications in Algebra, 27, 3755-3769.
https://doi.org/10.1080/00927879908826660
[13]  Li, C.H., Lu, Z.P. and Marušič, D. (2004) On Primitive Permutation Groups with Small Suborbits and Their Orbital Graphs. Journal of Algebra, 279, 749-770.
https://doi.org/10.1016/j.jalgebra.2004.03.005
[14]  Liebeck, M.W. and Saxl, J. (1985) The Primitive Permutation Groups of Odd Degree. Journal of the London Mathematical Society, 2, 250-264.
https://doi.org/10.1112/jlms/s2-31.2.250

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133