全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

奇数阶2倍素数度的局部本原图的刻画
Characterization of Locally Primitive Graphs of Odd Order with Twice Prime Valency

DOI: 10.12677/pm.2025.153088, PP. 162-166

Keywords: 局部本原图,拟本原图,商图,正规覆盖
Locally Primitive Graphs
, Quasiprimitive Graphs, Quotient Graphs, Normal Covers

Full-Text   Cite this paper   Add to My Lib

Abstract:

局部本原图是图论与群论交叉研究的重要对象,在图的结构和对称性研究中意义重大。本文在已有研究基础上,针对奇数阶2倍素数度的局部本原但非拟本原图展开深入研究。研究证明,此类图是某一商图的正规覆盖。并进一步研究了其自同构群关于极大非传递正规子群的商群,要么是几乎单的,要么其基柱同构于 Z p k ,其中 p 是素数, kr
Locally primitive graphs are important objects in the intersection of graph theory and group theory, and they are of great significance in the study of the structure and symmetry of graphs. Based on previous research, this paper conducts an in-depth study on locally primitive but non-quasiprimitive graphs with odd order and twice prime valency. The research proves that such graphs are normal covers of a certain quotient graphs. Furthermore, it is investigated that the quotient group of the automorphism group of these graphs with respect to a maximal non-transitive normal subgroup is either almost simple or has a socle isomorphic to Z p k , where p is a prime number, kr .

References

[1]  Praeger, C.E. (1993) An O’Nan-Scott Theorem for Finite Quasiprimitive Permutation Groups and an Application to 2-Arc Transitive Graphs. Journal of the London Mathematical Society, 2, 227-239.
https://doi.org/10.1112/jlms/s2-47.2.227
[2]  Praeger, C.E. (1997) Finite Quasiprimitive Graphs. In: Bailey, R.A., Ed., Surveys in Combinatorics, 1997, Cambridge University Press, 65-86.
https://doi.org/10.1017/cbo9780511662119.005
[3]  Frucht, R. (1939) Herstellung von Graphen mit Vorgegebener abstrakter Gruppe. Compositio Mathematica, 6, 239-250.
[4]  Tutte, W.T. (1947) A Family of Cubical Graphs. Mathematical Proceedings of the Cambridge Philosophical Society, 43, 459-474.
https://doi.org/10.1017/s0305004100023720
[5]  Gardiner, A.D. (1974) Vertex—Transitive Graphs. Journal of Combinatorial Theory, Series B, 16, 237-248.
[6]  Weiss, R. (1981) The Nonexistence of 8-Transitive Graphs. Combinatorica, 1, 309-311.
https://doi.org/10.1007/bf02579337
[7]  Praeger, C.E. (1999) Finite Normal Edge-Transitive Cayley Graphs. Bulletin of the Australian Mathematical Society, 60, 207-220.
https://doi.org/10.1017/s0004972700036340
[8]  Li, C.H. (1996) On Finite Groups with Given Maximal Subgroups. Journal of Algebra, 184, 199-218.
[9]  Giudici, M. and Li, C.H. (2009) On Finite Locally Primitive Graphs. Journal of Combinatorial Theory, Series B, 99, 863-880.
[10]  Praeger, C.E., and Schneider, C. (2012) Locally Primitive Graphs and Distance-Transitive Graphs. Journal of Algebraic Combinatorics, 35, 429-453.
[11]  Li, C., Lou, B. and Pan, J. (2011) Finite Locally Primitive Abelian Cayley Graphs. Science China Mathematics, 54, 845-854.
https://doi.org/10.1007/s11425-010-4134-0
[12]  徐尚进, 刘贵贤, 李靖建. 阶为p2qr群的局部本原图[J]. 广西大学学报(自然科学版), 2012, 37(2): 412-415.
[13]  徐明曜. 有限群导引(上册) [M]. 北京: 科学出版社, 1999.
[14]  Godsil, C.D. and Royle, G.F. (2001) Algebraic Graph Theory. Springer-Verlag.
[15]  Gross, J.L. and Tucker, T.W. (1987) Topological Graph Theory. Wiley.
[16]  Gui Fang, X. and Praeger, C.E. (1999) Finite Two-Are Transitive Graphs Admitting a Ree Simple Group. Communications in Algebra, 27, 3755-3769.
https://doi.org/10.1080/00927879908826660
[17]  Gui Fang, X. and Preager, C.E. (1999) Fintte Two-Arc Transitive Graphs Admitting a Suzuki Simple Group. Communications in Algebra, 27, 3727-3754.
https://doi.org/10.1080/00927879908826659
[18]  Li, C.H. (2001) On Finite S-Transitive Graphs of Odd Order. Journal of Combinatorial Theory, Series B, 81, 307-317.
https://doi.org/10.1006/jctb.2000.2012
[19]  Liao, H.C., Li, J.J. and Lu, Z.P. (2020) On Quasiprimitive Edge-Transitive Graphs of Odd Order and Twice Prime Valency. Journal of Group Theory, 23, 1017-1037.
https://doi.org/10.1515/jgth-2019-0091

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133