全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

大学生人格特质对抑郁水平的影响:基于随机森林模型分析
The Influence of College Students’ Personality Traits on Depression Levels: An Analysis Based on Random Forest Model

DOI: 10.12677/ap.2025.153152, PP. 262-269

Keywords: 心理健康,抑郁,随机森林模型,大学生
Mental Health
, Depression, Random Forest Algorithm, College Students

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:运用随机森林算法研究大学生人格特质对抑郁水平的影响。方法:采用中国大五人格问卷极简版、抑郁自评量表对1436名大学生进行测量。使用回归模型分析大学生人格特质是否影响其抑郁水平,通过R语言构建随机森林模型分析大学生人格特质对抑郁水平的重要性。结果:回收到有效问卷1368份,问卷有效率为95.3%。回归模型显示,大学生人格特质对其心理健康的影响有统计学意义。随机森林模型显示,大学生人格特质对抑郁水平的影响按重要性排名分别是神经质、责任心、宜人性、开放性、外倾性。结论:人格特质是影响大学生心理健康中的抑郁水平的重要因素。测量大学生的人格特质,是识别和干预大学生抑郁水平的有效途径。
Objective: The random forest algorithm was used to explore the influence of personality traits on depression level of college students. Methods: 1436 college students were measured by the Chinese Big Five Personality Questionnaire Inventory Brief 15-item Version and Self-rating Depression Scale. Regression model was used to analyze whether college students’ personality traits affected their depression level, and R language was used to construct a random forest model to analyze the importance of college students’ personality traits to depression level. Results: 1368 valid questionnaires were collected, the effective rate was 95.3%. The regression model shows that the influence of college students’ personality traits on their mental health has statistical significance. Random Forest model shows that the influence of personality traits on depression level of college students is neuroticism, conscientiousness, agreeableness, openness and extraversion. Conclusion: Personality trait is an important factor affecting the level of depression in college students’ mental health. Measuring the personality traits of college students is an effective way to identify and intervene in their levels of depression.

References

[1]  李彧, 位东涛, 孙江洲, 等(2019). 人格和抑郁症: 理论模型与行为-脑研究综述. 生理学报, 71(1), 163-172.
[2]  王孟成, 戴晓阳, 姚树桥(2011). 中国大五人格问卷的初步编制Ⅲ: 简式版的制定及信效度检验. 中国临床心理学杂志, 19(4), 454-457.
[3]  王蜜源, 韩芳芳, 刘佳, 黄凯琳, 彭红叶, 黄敏婷, 赵振海(2020). 大学生抑郁症状检出率及相关因素的meta分析. 中国心理卫生杂志, 34(12), 1041-1047.
[4]  夏学仓, 高小惠, 房少洁, 刘超(2024). 基于随机森林模型分析共情心理对大学生心理健康的影响. 中国健康教育, 40(4), 321-325.
[5]  杨春, 吴德华, 刘晓艺, 陈洋, 袁中静, 尹华站(2025). 研究生应对方式和心理素质在抑郁症状与压力源关系中的作用. 中国心理卫生杂志, 39(2), 180-185.
[6]  张琪, 吴任钢, 郝树伟, 徐震雷, 官锐园(2017). 大学生自尊在领悟社会支持和抑郁间的中介作用. 中国健康心理学杂志, 25(11), 1683-1687.
[7]  周莉, 王宏霞, 耿靖宇, 雷雳(2024). 大学生网络受欺负与抑郁的关系: 心理资本和同伴支持的调节作用. 心理科学, 47(4), 981-989.
[8]  Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32.
https://doi.org/10.1023/a:1010933404324
[9]  Buelow, M. T., & Cayton, C. (2020). Relationships between the Big Five Personality Characteristics and Performance on Behavioral Decision Making Tasks. Personality and Individual Differences, 160, Article 109931.
https://doi.org/10.1016/j.paid.2020.109931
[10]  Chamorro-Premuzic, T., & Furnham, A. (2008). Personality, Intelligence and Approaches to Learning as Predictors of Academic Performance. Personality and Individual Differences, 44, 1596-1603.
https://doi.org/10.1016/j.paid.2008.01.003
[11]  de Moor, M. H. M., van den Berg, S. M., Verweij, K. J. H., Krueger, R. F., Luciano, M., Arias Vasquez, A. et al. (2015). Meta-Analysis of Genome-Wide Association Studies for Neuroticism, and the Polygenic Association with Major Depressive Disorder. JAMA Psychiatry, 72, 642-650.
https://doi.org/10.1001/jamapsychiatry.2015.0554
[12]  Fife, D. A., & D’Onofrio, J. (2022). Common, Uncommon, and Novel Applications of Random Forest in Psychological Research. Behavior Research Methods, 55, 2447-2466.
https://doi.org/10.3758/s13428-022-01901-9
[13]  Furnham, A., & Chamorro-Premuzic, T. (2004). Personality and Intelligence as Predictors of Statistics Examination Grades. Personality and Individual Differences, 37, 943-955.
https://doi.org/10.1016/j.paid.2003.10.016
[14]  Gong, Y., Shi, J., Ding, H., Zhang, M., Kang, C., Wang, K. et al. (2020). Personality Traits and Depressive Symptoms: The Moderating and Mediating Effects of Resilience in Chinese Adolescents. Journal of Affective Disorders, 265, 611-617.
https://doi.org/10.1016/j.jad.2019.11.102
[15]  Ibrahim, A. K., Kelly, S. J., Adams, C. E., & Glazebrook, C. (2013). A Systematic Review of Studies of Depression Prevalence in University Students. Journal of Psychiatric Research, 47, 391-400.
https://doi.org/10.1016/j.jpsychires.2012.11.015
[16]  Pargent, F., Schoedel, R., & Stachl, C. (2023). Best Practices in Supervised Machine Learning: A Tutorial for Psychologists. Advances in Methods and Practices in Psychological Science, 6.
https://doi.org/10.1177/25152459231162559
[17]  Sheldon, E., Simmonds-Buckley, M., Bone, C., Mascarenhas, T., Chan, N., Wincott, M. et al. (2021). Prevalence and Risk Factors for Mental Health Problems in University Undergraduate Students: A Systematic Review with Meta-Analysis. Journal of Affective Disorders, 287, 282-292.
https://doi.org/10.1016/j.jad.2021.03.054
[18]  Yarkoni, T., & Westfall, J. (2017). Choosing Prediction over Explanation in Psychology: Lessons from Machine Learning. Perspectives on Psychological Science, 12, 1100-1122.
https://doi.org/10.1177/1745691617693393

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133