全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Machine Learning-Based Selection of Key miRNA Biomarkers for Breast Cancer Diagnostics

DOI: 10.4236/ojapps.2025.153038, PP. 597-603

Keywords: RNA, Breast Cancer, Machine Learning, Feature Selection, Random Forest

Full-Text   Cite this paper   Add to My Lib

Abstract:

MicroRNAs (miRNAs) play a pivotal role in gene expression regulation and are closely linked to cancer development. In this study, we employ machine learning techniques to identify critical miRNA biomarkers for breast cancer diagnostics using a dataset of 941 patient samples with 1,882 miRNA features. By addressing class imbalance and applying robust feature selection, we developed an optimized Random Forest model that achieved a perfect classification accuracy of 1.0. Analyzing feature importance revealed 51 miRNAs as potential biomarkers, offering a valuable panel for precision diagnostics and personalized treatment strategies.

References

[1]  Bartel, D.P. (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116, 281-297.
https://doi.org/10.1016/s0092-8674(04)00045-5
[2]  He, L. and Hannon, G.J. (2004) MicroRNAs: Small RNAs with a Big Role in Gene Regulation. Nature Reviews Genetics, 5, 522-531.
https://doi.org/10.1038/nrg1379
[3]  Baek, D., Villén, J., Shin, C., Camargo, F.D., Gygi, S.P. and Bartel, D.P. (2008) The Impact of MicroRNAs on Protein Output. Nature, 455, 64-71.
https://doi.org/10.1038/nature07242
[4]  Fabian, M.R., Sonenberg, N. and Filipowicz, W. (2010) Regulation of mRNA Translation and Stability by MicroRNAs. Annual Review of Biochemistry, 79, 351-379.
https://doi.org/10.1146/annurev-biochem-060308-103103
[5]  Calin, G.A., Dumitru, C.D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., et al. (2002) Frequent Deletions and Down-Regulation of MicroRNA Genes mir15 and mir16 at 13q14 in Chronic Lymphocytic Leukemia. Proceedings of the National Academy of Sciences, 99, 15524-15529.
https://doi.org/10.1073/pnas.242606799
[6]  McManus, M.T. (2003) MicroRNAs and Cancer. Seminars in Cancer Biology, 13, 253-258.
https://doi.org/10.1016/s1044-579x(03)00038-5
[7]  Wang, H., Tan, Z., Hu, H., Liu, H., Wu, T., Zheng, C., et al. (2019) MicroRNA-21 Promotes Breast Cancer Proliferation and Metastasis by Targeting LZTFL1. BMC Cancer, 19, Article No. 738.
https://doi.org/10.1186/s12885-019-5951-3
[8]  Wang, J., Wang, Q., Guan, Y., Sun, Y., Wang, X., Lively, K., et al. (2022) Breast Cancer Cell-Derived MicroRNA-155 Suppresses Tumor Progression via Enhancing Immune Cell Recruitment and Antitumor Function. Journal of Clinical Investigation, 132, e157248.
https://doi.org/10.1172/jci157248
[9]  Thammaiah, C.K. and Jayaram, S. (2016) Role of Let-7 Family MicroRNA in Breast Cancer. Non-Coding RNA Research, 1, 77-82.
https://doi.org/10.1016/j.ncrna.2016.10.003
[10]  Malik, Y. and Jens, A. (2014) MiRNomics: MicroRNA Biology and Computational Analysis. Springer.
[11]  Rehman, O., Zhuang, H., Muhamed Ali, A., Ibrahim, A. and Li, Z. (2019) Validation of MiRNAs as Breast Cancer Biomarkers with a Machine Learning Approach. Cancers, 11, Article No. 431.
https://doi.org/10.3390/cancers11030431
[12]  Contreras-Rodríguez, J.A., Córdova-Esparza, D.M., Saavedra-Leos, M.Z. and Silva-Cázares, M.B. (2023) Machine Learning and MiRNAs as Potential Biomarkers of Breast Cancer: A Systematic Review of Classification Methods. Applied Sciences, 13, Article No. 8257.
https://doi.org/10.3390/app13148257
[13]  Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32.
https://doi.org/10.1023/a:1010933404324
[14]  Chawla, N.V., Bowyer, K.W., Hall, L.O. and Kegelmeyer, W.P. (2002) SMOTE: Synthetic Minority Over-Sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357.
https://doi.org/10.1613/jair.953
[15]  Haibo He, and Garcia, E.A. (2009) Learning from Imbalanced Data. IEEE Transactions on Knowledge and Data Engineering, 21, 1263-1284.
https://doi.org/10.1109/tkde.2008.239

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133