|
压缩载荷作用下碳纤维增强环氧复合材料管高低温力学性能的试验研究
|
Abstract:
本研究探讨了温度对碳纤维增强环氧复合材料(CFRP)管吸能结构耐撞性能的影响,通过准静态轴向压缩和侧向压缩试验,分析了CFRP管在不同温度条件下(?30?C, 20?C, 70?C, 140?C, 180?C)的力学性能与失效模式,揭示了其耐撞性随温度变化的规律。研究结果表明,在轴向压缩载荷作用下,当温度低于玻璃转变温度(Tg)时,CFRP管以纤维断裂为主要能量吸收机制,表现出较高的比吸能(SEA);而当温度高于Tg时,破坏模式由花瓣状破坏转变为渐进折叠,SEA显著下降,表明材料在高温环境下的吸能性能减弱。在侧向压缩载荷下,CFRP管的能量吸收特性表现出不稳定性,但在接近Tg的温度范围内试样具有较优的承载能力。随着温度进一步升高,SEA呈现大幅下降的趋势。本研究探讨了温度对CFRP管力学性能和失效机制的影响,为CFRP管的耐撞性设计与高低温环境中的应用提供了实验依据。
This study investigates the effect of temperature on the crashworthiness of carbon fiber reinforced epoxy composite (CFRP) tube energy-absorbing structures. Using quasi-static axial compression and lateral compression tests, the mechanical properties and failure modes of CFRP tubes were systematically examined at various temperatures (?30?C, 20?C, 70?C, 140?C, 180?C), providing a comprehensive analysis of their crashworthiness. The results indicate that when the temperature is below the glass transition temperature (Tg), CFRP tubes primarily absorb energy through fiber breakage under axial compression. Conversely, when the temperature exceeds Tg, the predominant deformation mode transitions from petal-shaped failure to progressive folding, accompanied by a significant reduction in specific energy absorption (SEA). Under lateral compression, the energy absorption behavior is unstable; however, specimens exhibit enhanced load-bearing capacity near Tg. With increasing temperature, the SEA declines sharply, reflecting diminished energy absorption capability. This study highlights the critical influence of temperature on the mechanical performance and failure mechanisms of CFRP tubes.
[1] | Ashby, M.F. (2011) Materials Selection in Mechanical Design. Elsevier. |
[2] | Mamalis, A.G., Robinson, M., Manolakos, D.E., Demosthenous, G.A., Ioannidis, M.B. and Carruthers, J. (1997) Crashworthy Capability of Composite Material Structures. Composite Structures, 37, 109-134. https://doi.org/10.1016/s0263-8223(97)80005-0 |
[3] | Yusof, N.S.B., Sapuan, S.M., Sultan, M.T.H., Jawaid, M. and Maleque, M.A. (2017) Design and Materials Development of Automotive Crash Box: A Review. Ciência & Tecnologia dos Materiais, 29, 129-144. https://doi.org/10.1016/j.ctmat.2017.09.003 |
[4] | Guan, W., Gao, G., Li, J. and Yu, Y. (2018) Crushing Analysis and Multi-Objective Optimization of a Cutting Aluminium Tube Absorber for Railway Vehicles under Quasi-Static Loading. Thin-Walled Structures, 123, 395-408. https://doi.org/10.1016/j.tws.2017.11.031 |
[5] | Aktaş, M., Karakuzu, R. and Arman, Y. (2009) Compression-after Impact Behavior of Laminated Composite Plates Subjected to Low Velocity Impact in High Temperatures. Composite Structures, 89, 77-82. https://doi.org/10.1016/j.compstruct.2008.07.002 |
[6] | Li, S., Guo, X., Liao, J., Li, Q. and Sun, G. (2020) Crushing Analysis and Design Optimization for Foam-Filled Aluminum/CFRP Hybrid Tube against Transverse Impact. Composites Part B: Engineering, 196, Article ID: 108029. https://doi.org/10.1016/j.compositesb.2020.108029 |
[7] | Alexander, J.M. (1960) An Approximate Analysis of the Collapse of Thin Cylindrical Shells under Axial Loading. The Quarterly Journal of Mechanics and Applied Mathematics, 13, 10-15. https://doi.org/10.1093/qjmam/13.1.10 |
[8] | Abramowicz, W. and Jones, N. (1984) Dynamic Axial Crushing of Circular Tubes. International Journal of Impact Engineering, 2, 263-281. https://doi.org/10.1016/0734-743x(84)90010-1 |
[9] | Gupta, N.K., Velmurugan, R. and Gupta, S.K. (1997) An Analysis of Axial Crushing of Composite Tubes. Journal of Composite Materials, 31, 1262-1286. https://doi.org/10.1177/002199839703101301 |
[10] | Gui, L.J., Zhang, P. and Fan, Z.J. (2009) Energy Absorption Properties of Braided Glass/epoxy Tubes Subjected to Quasi-Static Axial Crushing. International Journal of Crashworthiness, 14, 17-23. https://doi.org/10.1080/13588260802411416 |
[11] | Kim, H.C., Shin, D.K., Lee, J.J. and Kwon, J.B. (2014) Crashworthiness of Aluminum/CFRP Square Hollow Section Beam under Axial Impact Loading for Crash Box Application. Composite Structures, 112, 1-10. https://doi.org/10.1016/j.compstruct.2014.01.042 |
[12] | Hussein, R.D., Ruan, D. and Lu, G. (2018) An Analytical Model of Square CFRP Tubes Subjected to Axial Compression. Composites Science and Technology, 168, 170-178. https://doi.org/10.1016/j.compscitech.2018.09.019 |
[13] | Siromani, D., Awerbuch, J. and Tan, T. (2014) Finite Element Modeling of the Crushing Behavior of Thin-Walled CFRP Tubes under Axial Compression. Composites Part B: Engineering, 64, 50-58. https://doi.org/10.1016/j.compositesb.2014.04.008 |
[14] | Zuo, W., Luo, Q., Li, Q. and Sun, G. (2023) Effect of Thermal and Hydrothermal Aging on the Crashworthiness of Carbon Fiber Reinforced Plastic Composite Tubes. Composite Structures, 303, Article ID: 116136. https://doi.org/10.1016/j.compstruct.2022.116136 |
[15] | 李紫伦, 杨安坤, 覃小红, 等. 三维编织玻璃纤维/环氧树脂复合材料薄壁管轴向压缩性能的温度效应[J]. 复合材料学报, 2023, 40(10): 5588-5600. |
[16] | 曹东风, 陈奕君, 蔡伟, 等. 高温热解损伤对碳纤维/环氧树脂基复合材料层合板冲击后剩余压缩强度的影响[J/OL]. 复合材料学报: 1-18. https://doi.org/10.13801/j.cnki.fhclxb.20250217.001, 2025-02-20. |