|
基于Fiducial预测密度的模型选择
|
Abstract:
模型选择作为统计分析的一个重要工具,它能选出候选模型集中拟合数据生成过程最好的那个模型。为了得到更好的预测标准,本文提出了一种基于Fiducial预测密度的模型选择方法,同时加入容许集来进一步压缩候选模型集,给出理论的同时也给出了MH算法去应用它。最后,对本文提出的模型选择进行了模拟研究与实例分析,结果均表明我们的方法优于其他方法。
Model selection is an essential tool in statistical analysis, enabling the identification of the best-fitting model for the data-generating process from a set of candidate models. To achieve better predictive performance, this paper proposes a model selection method based on Fiducial predictive density, incorporating an admissible set to further reduce the candidate model space. Theoretical foundations are provided, along with a Metropolis-Hastings (MH) algorithm for its implementation. Finally, simulation studies and empirical analyses are conducted to evaluate the proposed method. The results demonstrate that our method outperforms existing approaches in terms of both predictive accuracy and efficiency.
[1] | Tibshirani, R. (1996) Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58, 267-288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x |
[2] | Fan, J. and Li, R. (2001) Variable Selection via Nonconcave Penalized Likelihood and Its Oracle Properties. Journal of the American Statistical Association, 96, 1348-1360. https://doi.org/10.1198/016214501753382273 |
[3] | Zou, H. and Hastie, T. (2005) Regularization and Variable Selection via the Elastic Net. Journal of the Royal Statistical Society Series B: Statistical Methodology, 67, 301-320. https://doi.org/10.1111/j.1467-9868.2005.00503.x |
[4] | Zhang, C. (2010) Nearly Unbiased Variable Selection under Minimax Concave Penalty. The Annals of Statistics, 38, 894-942. https://doi.org/10.1214/09-aos729 |
[5] | Schwarz, G. (1978) Estimating the Dimension of a Model. The Annals of Statistics, 6, 461-464. https://doi.org/10.1214/aos/1176344136 |
[6] | Spiegelhalter, D.J., Best, N.G., Carlin, B.P. and Van Der Linde, A. (2002) Bayesian Measures of Model Complexity and Fit. Journal of the Royal Statistical Society Series B: Statistical Methodology, 64, 583-639. https://doi.org/10.1111/1467-9868.00353 |
[7] | Maity, A.K., Basu, S. and Ghosh, S. (2021) Bayesian Criterion-Based Variable Selection. Journal of the Royal Statistical Society Series C: Applied Statistics, 70, 835-857. https://doi.org/10.1111/rssc.12488 |
[8] | Akaike, H. (1973) Maximum Likelihood Identification of Gaussian Autoregressive Moving Average Models. Biometrika, 60, 255-265. https://doi.org/10.1093/biomet/60.2.255 |
[9] | Takeuchi, K. (1976) Distribution of Informational Statistics and a Criterion of Model Fitting. Suri-Kagaku, 153, 12-18. |
[10] | Mallows, C.L. (1973) Some Comments on CP. Technometrics, 15, 661-675. https://doi.org/10.1080/00401706.1973.10489103 |
[11] | Allen, D.M. (1974) The Relationship between Variable Selection and Data Agumentation and a Method for Prediction. Technometrics, 16, 125-127. https://doi.org/10.1080/00401706.1974.10489157 |
[12] | Fisher, R.A. (1922) On the Mathematical Foundations of Theoretical Statistics. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 222, 309-368. |
[13] | Dempster, A.P. (2008) The Dempster-Shafer Calculus for Statisticians. International Journal of Approximate Reasoning, 48, 365-377. https://doi.org/10.1016/j.ijar.2007.03.004 |
[14] | Martin, R., Zhang, J. and Liu, C. (2010) Dempster-Shafer Theory and Statistical Inference with Weak Beliefs. Statistical Science, 25, 72-87. https://doi.org/10.1214/10-sts322 |
[15] | Xie, M. and Singh, K. (2013) Confidence Distribution, the Frequentist Distribution Estimator of a Parameter: A Review. International Statistical Review, 81, 3-39. https://doi.org/10.1111/insr.12000 |
[16] | Majumder, A.P. and Hannig, J. (2016) Higher Order Asymptotics of Generalized Fiducial Distribution. |
[17] | Long, Y. and Xu, X. (2020) Classification by Fiducial Predictive Density Functions. Communications in Statistics—Theory and Methods, 51, 5187-5203. https://doi.org/10.1080/03610926.2020.1836218 |
[18] | Hannig, J. and Lee, T.C.M. (2009) Generalized Fiducial Inference for Wavelet Regression. Biometrika, 96, 847-860. https://doi.org/10.1093/biomet/asp050 |
[19] | 李涵, 赵建昕, 王晓, 李新民. 计算机试验下Kriging模型选择的比较[J]. 应用数学进展, 2021, 10(3): 694-700. |
[20] | 张淑芹, 李涵, 李新民. 基于Fiducial推断的Kriging模型选择[J]. 应用数学进展, 2024, 13(2): 684-691. |
[21] | Williams, J.P. and Hannig, J. (2019) Nonpenalized Variable Selection in High-Dimensional Linear Model Settings via Generalized Fiducial Inference. The Annals of Statistics, 47, 1723-1753. https://doi.org/10.1214/18-aos1733 |
[22] | Williams, J.P., Xie, Y. and Hannig, J. (2022) The EAS Approach for Graphical Selection Consistency in Vector Autoregression Models. Canadian Journal of Statistics, 51, 674-703. https://doi.org/10.1002/cjs.11726 |
[23] | Zhao, Y., Li, X. and Liang, H. (2022) Fiducial Marginal Likelihood-Based Variable Selection for High-Dimensional Regression (in Chinese). Science China Mathematics, 52, 1-21. |
[24] | Hannig, J., Iyer, H., Lai, R.C.S. and Lee, T.C.M. (2016) Generalized Fiducial Inference: A Review and New Results. Journal of the American Statistical Association, 111, 1346-1361. https://doi.org/10.1080/01621459.2016.1165102 |
[25] | Zhu, J., Wen, C., Zhu, J., Zhang, H. and Wang, X. (2020) A Polynomial Algorithm for Best-Subset Selection Problem. Proceedings of the National Academy of Sciences, 117, 33117-33123. https://doi.org/10.1073/pnas.2014241117 |
[26] | Vehtari, A., Gelman, A. and Gabry, J. (2016) Practical Bayesian Model Evaluation Using Leave-One-Out Cross-Validation and Waic. Statistics and Computing, 27, 1413-1432. https://doi.org/10.1007/s11222-016-9696-4 |
[27] | Huang, H., Lin, D.K.J., Liu, M. and Zhang, Q. (2019) Variable Selection for Kriging in Computer Experiments. Journal of Quality Technology, 52, 40-53. https://doi.org/10.1080/00224065.2019.1569959. |