全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2025 

铁死亡和脂质代谢在肝细胞癌中的研究进展
Advances in Ferroptosis and Lipid Metabolism in Hepatocellular Carcinoma

DOI: 10.12677/bp.2025.151008, PP. 52-57

Keywords: 铁死亡,脂质代谢,肝细胞癌
Ferroptosis
, Lipid Metabolism, Hepatocellular Carcinoma

Full-Text   Cite this paper   Add to My Lib

Abstract:

肝细胞癌(Hepatocellular carcinoma, HCC)隐匿性高,多数患者确诊时已处于中晚期,导致总体生存率低,预后不佳。铁死亡(Ferroptosis)是一种由铁依赖性致死水平的脂质过氧化引发,进而导致细胞出现特征性线粒体及坏死样变化的特殊死亡方式。脂质代谢(Lipid metabolism)在癌症发展进程中的重要性日益凸显,癌细胞生存、生长、增殖、侵袭和转移过程中所需的大量能量,依赖重新编程的脂质代谢提供支持。现有研究表明,铁死亡在HCC的生存和增殖中发挥着关键作用;脂质代谢与HCC的发生发展紧密相关,已成为HCC治疗的重要靶点。本文就近年来铁死亡和脂质代谢在HCC领域的研究进展作一综述,旨在为探寻HCC治疗的新靶点提供参考依据,以期为改善HCC患者的治疗效果和预后状况提供新思路。
Hepatocellular carcinoma (HCC) is a common malignant tumor worldwide with high concealment. Most patients are diagnosed at an advanced stage, resulting in low overall survival rates and poor prognosis. Ferroptosis is a special mode of cell death characterized by iron-dependent lethal levels of lipid peroxidation, leading to characteristic mitochondrial and necrotic-like changes in cells. Lipid metabolism has increasingly been highlighted for its importance in cancer development. Cancer cells rely on reprogrammed lipid metabolism to support the large amounts of energy required for survival, growth, proliferation, invasion, and metastasis. Existing studies have shown that ferroptosis plays a key role in the proliferation, migration, and apoptosis of HCC; lipid metabolism is closely related to the occurrence and development of HCC and has become an important target for HCC treatment. This review summarizes the recent research progress of ferroptosis and lipid metabolism in the field of HCC, aiming to provide reference for exploring new targets for HCC treatment and to offer new ideas for improving the therapeutic effects and prognosis of HCC patients.

References

[1]  He, P., Wan, H., Wan, J., Jiang, H., Yang, Y., Xie, K., et al. (2022) Systemic Therapies in Hepatocellular Carcinoma: Existing and Emerging Biomarkers for Treatment Response. Frontiers in Oncology, 12, Article ID: 1015527.
https://doi.org/10.3389/fonc.2022.1015527

[2]  Zhou, J., Li, L., Fang, L., Xie, H., Yao, W., Zhou, X., et al. (2016) Quercetin Reduces Cyclin D1 Activity and Induces G1 Phase Arrest in Hepg2 Cells. Oncology Letters, 12, 516-522.
https://doi.org/10.3892/ol.2016.4639

[3]  Vogel, A., Meyer, T., Sapisochin, G., Salem, R. and Saborowski, A. (2022) Hepatocellular Carcinoma. The Lancet, 400, 1345-1362.
https://doi.org/10.1016/s0140-6736(22)01200-4

[4]  Huang, Z., Xia, H., Cui, Y., Yam, J.W.P. and Xu, Y. (2022) Ferroptosis: From Basic Research to Clinical Therapeutics in Hepatocellular Carcinoma. Journal of Clinical and Translational Hepatology, 11, 207-218.
https://doi.org/10.14218/jcth.2022.00255

[5]  Li, J., Cao, F., Yin, H., Huang, Z., Lin, Z., Mao, N., et al. (2020) Ferroptosis: Past, Present and Future. Cell Death & Disease, 11, Article No. 88.
https://doi.org/10.1038/s41419-020-2298-2

[6]  Gao, L., Xu, Z., Huang, Z., Tang, Y., Yang, D., Huang, J., et al. (2020) CPI-613 Rewires Lipid Metabolism to Enhance Pancreatic Cancer Apoptosis via the AMPK-ACC Signaling. Journal of Experimental & Clinical Cancer Research, 39, Article No. 73.
https://doi.org/10.1186/s13046-020-01579-x

[7]  Liu, F., Ma, M., Gao, A., Ma, F., Ma, G., Liu, P., et al. (2021) PKM2‐TMEM33 Axis Regulates Lipid Homeostasis in Cancer Cells by Controlling SCAP Stability. The EMBO Journal, 40, e108065.
https://doi.org/10.15252/embj.2021108065

[8]  Bian, X., Liu, R., Meng, Y., Xing, D., Xu, D. and Lu, Z. (2020) Lipid Metabolism and Cancer. Journal of Experimental Medicine, 218, e20201606.
https://doi.org/10.1084/jem.20201606

[9]  Martin-Perez, M., Urdiroz-Urricelqui, U., Bigas, C. and Benitah, S.A. (2022) The Role of Lipids in Cancer Progression and Metastasis. Cell Metabolism, 34, 1675-1699.
https://doi.org/10.1016/j.cmet.2022.09.023

[10]  Alves-Bezerra, M. and Cohen, D.E. (2017) Triglyceride Metabolism in the Liver. In: Comprehensive Physiology, John Wiley & Sons, 1-22.
[11]  Muir, K., Hazim, A., He, Y., Peyressatre, M., Kim, D., Song, X., et al. (2013) Proteomic and Lipidomic Signatures of Lipid Metabolism in Nash-Associated Hepatocellular Carcinoma. Cancer Research, 73, 4722-4731.
https://doi.org/10.1158/0008-5472.can-12-3797

[12]  Ismail, I.T., Elfert, A., Helal, M., Salama, I., El-Said, H. and Fiehn, O. (2020) Remodeling Lipids in the Transition from Chronic Liver Disease to Hepatocellular Carcinoma. Cancers, 13, Article No. 88.
https://doi.org/10.3390/cancers13010088

[13]  Huang, Y., Wang, S., Ke, A. and Guo, K. (2023) Ferroptosis and Its Interaction with Tumor Immune Microenvironment in Liver Cancer. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1878, Article ID: 188848.
https://doi.org/10.1016/j.bbcan.2022.188848

[14]  Zhang, D., Man, D., Lu, J., Jiang, Y., Ding, B., Su, R., et al. (2023) Mitochondrial TSPO Promotes Hepatocellular Carcinoma Progression through Ferroptosis Inhibition and Immune Evasion. Advanced Science, 10, Article ID: 2206669.
https://doi.org/10.1002/advs.202206669

[15]  Cao, F., Luo, A. and Yang, C. (2021) G6PD Inhibits Ferroptosis in Hepatocellular Carcinoma by Targeting Cytochrome P450 Oxidoreductase. Cellular Signalling, 87, Article ID: 110098.
https://doi.org/10.1016/j.cellsig.2021.110098

[16]  Zeng, T., Li, B., Shu, X., Pang, J., Wang, H., Cai, X., et al. (2023) Pan-Cancer Analysis Reveals That G6PD Is a Prognostic Biomarker and Therapeutic Target for a Variety of Cancers. Frontiers in Oncology, 13, Article ID: 1183474.
https://doi.org/10.3389/fonc.2023.1183474

[17]  Yang, R., Gao, W., Wang, Z., Jian, H., Peng, L., Yu, X., et al. (2024) Polyphyllin I Induced Ferroptosis to Suppress the Progression of Hepatocellular Carcinoma through Activation of the Mitochondrial Dysfunction via Nrf2/HO-1/GPX4 Axis. Phytomedicine, 122, Article ID: 155135.
https://doi.org/10.1016/j.phymed.2023.155135

[18]  Shan, Y., Yang, G., Lu, Q., Hu, X., Qi, D., Zhou, Y., et al. (2022) Centrosomal Protein 290 Is a Novel Prognostic Indicator That Modulates Liver Cancer Cell Ferroptosis via the Nrf2 Pathway. Aging, 14, 2367-2382.
https://doi.org/10.18632/aging.203946

[19]  Zhang, T., Sun, L., Hao, Y., Suo, C., Shen, S., Wei, H., et al. (2021) ENO1 Suppresses Cancer Cell Ferroptosis by Degrading the mRNA of Iron Regulatory Protein 1. Nature Cancer, 3, 75-89.
https://doi.org/10.1038/s43018-021-00299-1

[20]  Zhu, H., Han, C. and Wu, T. (2015) Mir-17-92 Cluster Promotes Hepatocarcinogenesis. Carcinogenesis, 36, 1213-1222.
https://doi.org/10.1093/carcin/bgv112

[21]  Xiao, F., Zhang, D., Wu, Y., Jia, Q., Zhang, L., Li, Y., et al. (2019) miRNA-17-92 Protects Endothelial Cells from Erastin-Induced Ferroptosis through Targeting the A20-ACSL4 Axis. Biochemical and Biophysical Research Communications, 515, 448-454.
https://doi.org/10.1016/j.bbrc.2019.05.147

[22]  Jun, L., Chen, W., Han, L., Yanmin, L., Qinglei, Z. and Pengfei, Z. (2023) Protocadherin 20 Promotes Ferroptosis by Suppressing the Expression of Sirtuin 1 and Promoting the Acetylation of Nuclear Factor Erythroid 2-Related Factor 2 in Hepatocellular Carcinoma. The International Journal of Biochemistry & Cell Biology, 156, Article ID: 106363.
https://doi.org/10.1016/j.biocel.2023.106363

[23]  Yang, H., Sun, W., Bi, T., Wang, Q., Wang, W., Xu, Y., et al. (2023) The PTBP1-NCOA4 Axis Promotes Ferroptosis in Liver Cancer Cells. Oncology Reports, 49, Article No. 45.
https://doi.org/10.3892/or.2023.8482

[24]  Zhao, Q., Lin, X. and Wang, G. (2022) Targeting SREBP-1-Mediated Lipogenesis as Potential Strategies for Cancer. Frontiers in Oncology, 12, Article ID: 952371.
https://doi.org/10.3389/fonc.2022.952371

[25]  Cheng, X., Li, J. and Guo, D. (2018) SCAP/SREBPs Are Central Players in Lipid Metabolism and Novel Metabolic Targets in Cancer Therapy. Current Topics in Medicinal Chemistry, 18, 484-493.
https://doi.org/10.2174/1568026618666180523104541

[26]  Yin, F., Feng, F., Wang, L., Wang, X., Li, Z. and Cao, Y. (2019) SREBP-1 Inhibitor Betulin Enhances the Antitumor Effect of Sorafenib on Hepatocellular Carcinoma via Restricting Cellular Glycolytic Activity. Cell Death & Disease, 10, Article No. 672.
https://doi.org/10.1038/s41419-019-1884-7

[27]  Xue, L., Qi, H., Zhang, H., Ding, L., Huang, Q., Zhao, D., et al. (2020) Targeting SREBP-2-Regulated Mevalonate Metabolism for Cancer Therapy. Frontiers in Oncology, 10, Article No. 1510.
https://doi.org/10.3389/fonc.2020.01510

[28]  Menendez, J.A. and Lupu, R. (2017) Fatty Acid Synthase (FASN) as a Therapeutic Target in Breast Cancer. Expert Opinion on Therapeutic Targets, 21, 1001-1016.
https://doi.org/10.1080/14728222.2017.1381087

[29]  Fhu, C.W. and Ali, A. (2020) Fatty Acid Synthase: An Emerging Target in Cancer. Molecules, 25, Article No. 3935.
https://doi.org/10.3390/molecules25173935

[30]  Li, C., Zhang, L., Qiu, Z., Deng, W. and Wang, W. (2022) Key Molecules of Fatty Acid Metabolism in Gastric Cancer. Biomolecules, 12, Article No. 706.
https://doi.org/10.3390/biom12050706

[31]  Nakagawa, H., Hayata, Y., Kawamura, S., Yamada, T., Fujiwara, N. and Koike, K. (2018) Lipid Metabolic Reprogramming in Hepatocellular Carcinoma. Cancers, 10, Article No. 447.
https://doi.org/10.3390/cancers10110447

[32]  Menendez, J.A. and Lupu, R. (2007) Fatty Acid Synthase and the Lipogenic Phenotype in Cancer Pathogenesis. Nature Reviews Cancer, 7, 763-777.
https://doi.org/10.1038/nrc2222

[33]  Wang, R., Liu, Z., Fan, Z. and Zhan, H. (2023) Lipid Metabolism Reprogramming of CD8+ T Cell and Therapeutic Implications in Cancer. Cancer Letters, 567, Article ID: 216267.
https://doi.org/10.1016/j.canlet.2023.216267

[34]  Li, Y., Yang, W., Zheng, Y., Dai, W., Ji, J., Wu, L., et al. (2023) Targeting Fatty Acid Synthase Modulates Sensitivity of Hepatocellular Carcinoma to Sorafenib via Ferroptosis. Journal of Experimental & Clinical Cancer Research, 42, Article No. 6.
https://doi.org/10.1186/s13046-022-02567-z

[35]  O’Farrell, M., Duke, G., Crowley, R., Buckley, D., Martins, E.B., Bhattacharya, D., et al. (2022) FASN Inhibition Targets Multiple Drivers of NASH by Reducing Steatosis, Inflammation and Fibrosis in Preclinical Models. Scientific Reports, 12, Article No. 15661.
https://doi.org/10.1038/s41598-022-19459-z

[36]  Wang, H., Wang, X., Zhang, X. and Xu, W. (2024) The Promising Role of Tumor-Associated Macrophages in the Treatment of Cancer. Drug Resistance Updates, 73, Article ID: 101041.
https://doi.org/10.1016/j.drup.2023.101041

[37]  Singh, S., Karthikeyan, C. and Moorthy, N.S.H.N. (2024) Fatty Acid Synthase (FASN): A Patent Review since 2016-Present. Recent Patents on Anti-Cancer Drug Discovery, 19, 37-56.
https://doi.org/10.2174/1574892818666230112170003

[38]  Liu, W., Chakraborty, B., Safi, R., Kazmin, D., Chang, C. and McDonnell, D.P. (2021) Dysregulated Cholesterol Homeostasis Results in Resistance to Ferroptosis Increasing Tumorigenicity and Metastasis in Cancer. Nature Communications, 12, Article No. 5103.
https://doi.org/10.1038/s41467-021-25354-4

[39]  Li, Y., Ran, Q., Duan, Q., Jin, J., Wang, Y., Yu, L., et al. (2024) 7-Dehydrocholesterol Dictates Ferroptosis Sensitivity. Nature, 626, 411-418.
https://doi.org/10.1038/s41586-023-06983-9

[40]  Hao, X., Zheng, Z., Liu, H., Zhang, Y., Kang, J., Kong, X., et al. (2022) Inhibition of APOC1 Promotes the Transformation of M2 into M1 Macrophages via the Ferroptosis Pathway and Enhances Anti-PD1 Immunotherapy in Hepatocellular Carcinoma Based on Single-Cell RNA Sequencing. Redox Biology, 56, Article ID: 102463.
https://doi.org/10.1016/j.redox.2022.102463

[41]  Henry, W.S., Müller, S., Yang, J.-S., et al. (2024) Ether Lipids Influence Cancer Cell Fate by Modulating Iron Uptake.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133