全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Bioprocess  2025 

干扰素-γ在肿瘤免疫中的双重角色:抗肿瘤与促肿瘤作用
The Dual Role of Interferon-γ in Tumor Immunity: Anti-Tumor and Pro-Tumor Effects

DOI: 10.12677/bp.2025.151007, PP. 44-51

Keywords: 干扰素-γ (IFN-γ),肿瘤免疫,免疫检查点抑制剂,JAK/STAT信号通路,免疫逃逸,肿瘤微环境
Interferon-γ (IFN-γ)
, Tumor Immunity, Immune Checkpoint Inhibitors, JAK/STAT Signaling Pathway, Immune Evasion, Tumor Microenvironment

Full-Text   Cite this paper   Add to My Lib

Abstract:

干扰素-γ (IFN-γ)作为II型干扰素家族的核心成员,在肿瘤免疫调控中扮演着复杂的角色。一方面,IFN-γ可诱导肿瘤细胞凋亡、抑制血管生成、增强抗原呈递及细胞毒性T细胞功能,发挥显著的抗肿瘤作用。另一方面,低剂量或持续性的IFN-γ信号可促进肿瘤干细胞特性、上皮–间质转化(EMT)及免疫检查点分子(如PD-L1)的表达,加剧肿瘤转移与免疫逃逸。本文系统地综述了IFN-γ的双向调控机制,IFN-γ与巨噬细胞、T细胞及抗原呈递细胞的动态相互作用,及IFN-γ免疫检查点抑制剂治疗中的关键作用。IFN-γ相关基因的表达水平与免疫治疗疗效密切相关,但其促肿瘤特性却限制其在临床中的应用。未来研究需进一步解析IFN-γ在肿瘤微环境中的作用,探索其靶向调控信号通路的策略,以优化癌症免疫治疗的精准性与安全性。本文为理解IFN-γ的免疫调控网络及其在肿瘤治疗中的应用提供了新的视角。
Interferon-γ (IFN-γ), a core member of the type II interferon family, plays a complex dual role in tumor immune regulation. On one hand, IFN-γ can induce apoptosis in tumor cells, inhibit angiogenesis, enhance antigen presentation, and promote cytotoxic T cell function, thereby exerting significant anti-tumor effects. On the other hand, low doses of IFN-γ or persistent IFN-γ signaling may exacerbate tumor metastasis and immune escape by promoting stem cell characteristics, epithelial-to-mesenchymal transition (EMT), and the expression of immune checkpoint molecules such as PD-L1. This paper systematically reviews the bidirectional regulatory mechanisms of IFN-γ, dynamic interactions with macrophages, T cells, and antigen-presenting cells, as well as its critical role in immune checkpoint inhibitor therapy. Research indicates that the expression levels of IFN-γ-related genes are closely related to the efficacy of immunotherapy, but its protumor characteristics may limit clinical benefits. Future studies should further dissect the role of IFN-γ within the tumor microenvironment and develop strategies for targeted modulation of its signaling pathways to enhance the precision and safety of cancer immunotherapy. This paper provides new insights into understanding the immune regulatory network of IFN-γ and its application in cancer treatment.

References

[1]  吴朋飞, 杨智, 李青晏, 等. 肿瘤微环境中细胞代谢相互作用的研究进展[J]. 四川大学学报(医学版), 2024, 55(2): 482-489.
[2]  戈文珂, 吴卫兵. 肿瘤微环境中肿瘤相关巨噬细胞极化的影响因素及其意义[J]. 中国肺癌杂志, 2023, 26(3): 228-237.
[3]  金梦茹, 王莉, 李燕京. 乳酸对肿瘤微环境内免疫细胞的影响及相关靶点治疗的研究进展[J]. 肿瘤防治研究, 2023, 50(6): 634-640.
[4]  李丽, 张允雷, 张秀伟, 柯章敏, 刘怡婷, 李隆杰. 肿瘤微环境中微生物影响肿瘤发生发展的分子机制[J]. 激光生物学报, 2023, 32(5): 385-392.
[5]  Müller, E., Christopoulos, P.F., Halder, S., Lunde, A., Beraki, K., Speth, M., et al. (2017) Toll-Like Receptor Ligands and Interferon-γ Synergize for Induction of Antitumor M1 Macrophages. Frontiers in Immunology, 8, Article 1383.
https://doi.org/10.3389/fimmu.2017.01383

[6]  Ong, C.E.B., Lyons, A.B., Woods, G.M. and Flies, A.S. (2019) Inducible IFN-γ Expression for MHC-I Upregulation in Devil Facial Tumor Cells. Frontiers in Immunology, 9, Article 3117.
https://doi.org/10.3389/fimmu.2018.03117

[7]  李园, 王宁. 神经母细胞瘤免疫逃逸机制的研究进展[J]. 发育医学电子杂志, 2024, 12(1): 68-74.
[8]  Russell, M.S., Dudani, R., Krishnan, L. and Sad, S. (2009) IFN-γ Expressed by T Cells Regulates the Persistence of Antigen Presentation by Limiting the Survival of Dendritic Cells. The Journal of Immunology, 183, 7710-7718.
https://doi.org/10.4049/jimmunol.0901274

[9]  Hertweck, A., Vila de Mucha, M., Barber, P.R., Dagil, R., Porter, H., Ramos, A., et al. (2022) The TH1 Cell Lineage-Determining Transcription Factor T-Bet Suppresses TH2 Gene Expression by Redistributing GATA3 Away from TH2 Genes. Nucleic Acids Research, 50, 4557-4573.
https://doi.org/10.1093/nar/gkac258

[10]  金丽娅, 凤志慧. 放疗诱导远端效应的免疫相关机制研究进展[J]. 中国药理学与毒理学杂志, 2020, 34(12): 930-936.
[11]  Djuretic, I.M., Levanon, D., Negreanu, V., Groner, Y., Rao, A. and Ansel, K.M. (2006) Transcription Factors T-Bet and RUNX3 Cooperate to Activate Ifng and Silence IL4 in T Helper Type 1 Cells. Nature Immunology, 8, 145-153.
https://doi.org/10.1038/ni1424

[12]  Tanaka, K., Ichiyama, K., Hashimoto, M., Yoshida, H., Takimoto, T., Takaesu, G., et al. (2008) Loss of Suppressor of Cytokine Signaling 1 in Helper T Cells Leads to Defective Th17 Differentiation by Enhancing Antagonistic Effects of IFN-γ on STAT3 and Smads. The Journal of Immunology, 180, 3746-3756.
https://doi.org/10.4049/jimmunol.180.6.3746

[13]  Bréart, B., Williams, K., Krimm, S., Wong, T., Kayser, B.D., Wang, L., et al. (2025) IL-27 Elicits a Cytotoxic CD8+ T Cell Program to Enforce Tumour Control. Nature.
https://doi.org/10.1038/s41586-024-08510-w

[14]  Olalekan, S.A., Cao, Y., Hamel, K.M. and Finnegan, A. (2015) B Cells Expressing IFN‐γ Suppress Treg‐Cell Differentiation and Promote Autoimmune Experimental Arthritis. European Journal of Immunology, 45, 988-998.
https://doi.org/10.1002/eji.201445036

[15]  Kundu, M., Roy, A. and Pahan, K. (2017) Selective Neutralization of IL-12 P40 Monomer Induces Death in Prostate Cancer Cells via IL-12-IFN-γ. Proceedings of the National Academy of Sciences, 114, 11482-11487.
https://doi.org/10.1073/pnas.1705536114

[16]  Guinn, Z., Brown, D.M. and Petro, T.M. (2017) Activation of IRF3 Contributes to IFN-γ and ISG54 Expression during the Immune Responses to B16F10 Tumor Growth. International Immunopharmacology, 50, 121-129.
https://doi.org/10.1016/j.intimp.2017.06.016

[17]  Zaidi, M.R. (2019) The Interferon-Gamma Paradox in Cancer. Journal of Interferon & Cytokine Research, 39, 30-38.
https://doi.org/10.1089/jir.2018.0087

[18]  Wang, W., Green, M., Choi, J.E., Gijón, M., Kennedy, P.D., Johnson, J.K., et al. (2019) CD8+ T Cells Regulate Tumour Ferroptosis during Cancer Immunotherapy. Nature, 569, 270-274.
https://doi.org/10.1038/s41586-019-1170-y

[19]  Higgs, B.W., Morehouse, C.A., Streicher, K., Brohawn, P.Z., Pilataxi, F., Gupta, A., et al. (2018) Interferon Gamma Messenger RNA Signature in Tumor Biopsies Predicts Outcomes in Patients with Non-Small Cell Lung Carcinoma or Urothelial Cancer Treated with Durvalumab. Clinical Cancer Research, 24, 3857-3866.
https://doi.org/10.1158/1078-0432.ccr-17-3451

[20]  Karachaliou, N., Gonzalez-Cao, M., Crespo, G., Drozdowskyj, A., Aldeguer, E., Gimenez-Capitan, A., et al. (2018) Interferon Gamma, an Important Marker of Response to Immune Checkpoint Blockade in Non-Small Cell Lung Cancer and Melanoma Patients. Therapeutic Advances in Medical Oncology, 10.
https://doi.org/10.1177/1758834017749748

[21]  Zhang, M., Huang, L., Ding, G., Huang, H., Cao, G., Sun, X., et al. (2020) Interferon Gamma Inhibits CXCL8-CXCR2 Axis Mediated Tumor-Associated Macrophages Tumor Trafficking and Enhances Anti-PD1 Efficacy in Pancreatic Cancer. Journal for ImmunoTherapy of Cancer, 8, e000308.
https://doi.org/10.1136/jitc-2019-000308

[22]  Sceneay, J., Goreczny, G.J., Wilson, K., Morrow, S., DeCristo, M.J., Ubellacker, J.M., et al. (2019) Interferon Signaling Is Diminished with Age and Is Associated with Immune Checkpoint Blockade Efficacy in Triple-Negative Breast Cancer. Cancer Discovery, 9, 1208-1227.
https://doi.org/10.1158/2159-8290.cd-18-1454

[23]  Song, M., Ping, Y., Zhang, K., Yang, L., Li, F., Zhang, C., et al. (2019) Low-Dose IFNγ Induces Tumor Cell Stemness in Tumor Microenvironment of Non-Small Cell Lung Cancer. Cancer Research, 79, 3737-3748.
https://doi.org/10.1158/0008-5472.can-19-0596

[24]  Lo, U.-G., Bao, J., Cen, J., Yeh, H.-C., Luo, J., Tan, W., et al. (2019) Interferon-Induced IFIT5 Promotes Epithelial-to-Mesenchymal Transition Leading to Renal Cancer Invasion. American Journal of Clinical and Experimental Urology, 7, 31-45.
[25]  Singh, A.P., Moniaux, N., Chauhan, S.C., Meza, J.L. and Batra, S.K. (2004) Inhibition of MUC4 Expression Suppresses Pancreatic Tumor Cell Growth and Metastasis. Cancer Research, 64, 622-630.
https://doi.org/10.1158/0008-5472.can-03-2636

[26]  Andrianifahanana, M., Singh, A.P., Nemos, C., Ponnusamy, M.P., Moniaux, N., Mehta, P.P., et al. (2007) IFN-γ-Induced Expression of MUC4 in Pancreatic Cancer Cells Is Mediated by STAT-1 Upregulation: A Novel Mechanism for IFN-γ Response. Oncogene, 26, 7251-7261.
https://doi.org/10.1038/sj.onc.1210532

[27]  Singh, S., Kumar, S., Srivastava, R.K., Nandi, A., Thacker, G., Murali, H., et al. (2020) Loss of ELF5-FBXW7 Stabilizes IFNGR1 to Promote the Growth and Metastasis of Triple-Negative Breast Cancer through Interferon-γ Signalling. Nature Cell Biology, 22, 591-602.
https://doi.org/10.1038/s41556-020-0495-y

[28]  Pai, C.S., Huang, J.T., Lu, X., Simons, D.M., Park, C., Chang, A., et al. (2019) Clonal Deletion of Tumor-Specific T Cells by Interferon-γ Confers Therapeutic Resistance to Combination Immune Checkpoint Blockade. Immunity, 50, 477-492.E8.
https://doi.org/10.1016/j.immuni.2019.01.006

[29]  He, Y., Wang, X., Zhang, G., Chen, H., Zhang, H. and Feng, Z. (2005) Sustained Low-Level Expression of Interferon-γ Promotes Tumor Development: Potential Insights in Tumor Prevention and Tumor Immunotherapy. Cancer Immunology, Immunotherapy, 54, 891-897.
https://doi.org/10.1007/s00262-004-0654-1

[30]  Benci, J.L., Xu, B., Qiu, Y., Wu, T.J., Dada, H., Twyman-Saint Victor, C., et al. (2016) Tumor Interferon Signaling Regulates a Multigenic Resistance Program to Immune Checkpoint Blockade. Cell, 167, 1540-1554.E12.
https://doi.org/10.1016/j.cell.2016.11.022

[31]  Li, X., Shao, C., Shi, Y. and Han, W. (2018) Lessons Learned from the Blockade of Immune Checkpoints in Cancer Immunotherapy. Journal of Hematology & Oncology, 11, Article No. 31.
https://doi.org/10.1186/s13045-018-0578-4

[32]  Marin-Acevedo, J.A., Dholaria, B., Soyano, A.E., Knutson, K.L., Chumsri, S. and Lou, Y. (2018) Next Generation of Immune Checkpoint Therapy in Cancer: New Developments and Challenges. Journal of Hematology & Oncology, 11, Article No. 39.
https://doi.org/10.1186/s13045-018-0582-8

[33]  Liu, D. (2019) Cancer Biomarkers for Targeted Therapy. Biomarker Research, 7, Article No. 25.
https://doi.org/10.1186/s40364-019-0178-7

[34]  Chen, G., Huang, A.C., Zhang, W., Zhang, G., Wu, M., Xu, W., et al. (2018) Exosomal PD-L1 Contributes to Immunosuppression and Is Associated with Anti-PD-1 Response. Nature, 560, 382-386.
https://doi.org/10.1038/s41586-018-0392-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133