全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

农作物秸秆炭对土壤中镉和磷的影响
Effect of Crop Straw Biochar on Cadmium and Phosphorus in Soil

DOI: 10.12677/hjas.2025.153027, PP. 226-234

Keywords: 农作物秸秆,生物炭,重金属镉,磷
Crop Residue
, Biochar, Heavy Metal Cadmium, Phosphorus

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究采用室内土壤培养实验分析了秸秆炭施加到土壤后对土壤pH、镉和磷的影响。进一步利用秸秆炭吸附实验和材料表征手段,分析了秸秆炭对土壤中镉和磷的作用机理。结果表明:在芦苇秸秆炭、棉花秸秆炭、辣椒秸秆炭和烟草秸秆炭中,烟草秸秆炭对镉和磷的吸附效果最佳,分别可以达到92.95%和14.13%。其施加到土壤后,可以显著提高土壤pH和磷含量,且随着施加比例和作用时间的延长,秸秆炭的影响越显著。相较于CK,0.5%,1%和3%烟草秸秆炭处理对镉的钝化作用分别可以达到79%,90%和96%。秸秆炭对镉和磷的吸附过程和材料表征表明,烟草秸秆炭对镉和磷的吸附主要是以化学吸附为主,其中炭表面的含氧官能团(O-H和C=O)是主要影响因素。此外,生物炭表面孔径也会影响其对镉和磷的吸附。
In this study, the effects of straw biochar on soil pH, cadmium and phosphorus after application to soil were analyzed using indoor soil culture experiments. The mechanism of action of straw biochar on cadmium and phosphorus in soil was further analyzed using straw biochar adsorption experiments and material characterization. The results showed that among reed straw biochar, cotton straw biochar, pepper straw biochar and tobacco straw biochar, tobacco straw biochar had the best adsorption effect on cadmium and phosphorus, which could reach 92.95% and 14.13%, respectively. When applied to the soil, it could significantly increase the soil pH and phosphorus content, and the effect of straw charcoal was more significant with the extension of the application ratio and action time. Compared with CK, 0.5%, 1% and 3% tobacco straw biochar treatments could passivate cadmium by 79%, 90% and 96%, respectively. The adsorption process and FTIR characterization of cadmium and phosphorus by straw biochar showed that the adsorption of cadmium and phosphorus by tobacco straw biochar was mainly based on chemisorption, in which the oxygen-containing functional groups on the surface of the charcoal (O-H and C=O) were the main influencing factors. In addition, the surface aperture of biochar also affects the adsorption of cadmium and phosphorus.

References

[1]  姜珊, 李衍素, 王娟娟, 贺超兴, 于贤昌, 王君. 我国秸秆还田技术发展现状[J]. 中国蔬菜, 2021(11): 27-32.
[2]  张美芝, 耿煜函, 张薇, 林昕, 温佳旭, 陈雪丽, 肖洋. 秸秆生物炭在农田中的应用研究综述[J]. 中国农学通报, 2021, 37(21): 59-65.
[3]  Järup, L. (2002) Cadmium Overload and Toxicity. Nephrology Dialysis Transplantation, 17, 35-39.
https://doi.org/10.1093/ndt/17.suppl_2.35

[4]  McLaughlin, M.J., Zarcinas, B.A., Stevens, D.P. and Cook, N. (2000) Soil Testing for Heavy Metals. Communications in Soil Science and Plant Analysis, 31, 1661-1700.
https://doi.org/10.1080/00103620009370531

[5]  张沙沙, 刘扬, 曹坤坤, 黄洋, 李成成, 郭晓, 胡学玉. 生物质炭对富磷镉土壤中磷镉形态转化的影响[J]. 环境科学与技术, 2019, 42(7): 16-22.
[6]  Zhang, J., Tan, Z. and Huang, Q. (2021) Study on Principles and Mechanisms of New Biochar Passivation of Cadmium in Soil. Biochar, 3, 161-173.
https://doi.org/10.1007/s42773-021-00088-0

[7]  李鸿博, 钟怡, 张昊楠, 王鑫, 陈静, 王琳玲, 肖劲光, 肖武, 王薇. 生物炭修复重金属污染农田土壤的机制及应用研究进展[J]. 农业工程学报, 2020, 36(13): 173-185.
[8]  Schneider, F. and Haderlein, S.B. (2016) Potential Effects of Biochar on the Availability of Phosphorus—Mechanistic Insights. Geoderma, 277, 83-90.
https://doi.org/10.1016/j.geoderma.2016.05.007

[9]  Uchimiya, M., Lima, I.M., Thomas Klasson, K., Chang, S., Wartelle, L.H. and Rodgers, J.E. (2010) Immobilization of Heavy Metal Ions (CuII, CdII, NiII, and PbII) by Broiler Litter-Derived Biochars in Water and Soil. Journal of Agricultural and Food Chemistry, 58, 5538-5544.
https://doi.org/10.1021/jf9044217

[10]  Bao, B., Cui, H., Li, H., Fan, Y., Li, D., Wei, J., et al. (2023) Phosphorus Release Characterization of Biochar Loaded with Inherent and Exogenous Phosphorus and Impact on Soil Pb Immobilization. Journal of Cleaner Production, 400, Article 136713.
https://doi.org/10.1016/j.jclepro.2023.136713

[11]  Shenbagavalli, S. and Mahimairaja, S. (2012) Production and Characterization of Biochar from Different Biological Wastes. International Journal of Plant, Animal and Environmental Sciences, 2, 197-201.
[12]  黄宝源, 邓兰生, 邓丽芳, 姜华彬, 谢君, 陈勇. 生物炭调理酸化土壤的作用机制[J]. 土壤与作物, 2024, 13(1): 74-84.
[13]  张祥, 王典, 姜存仓, 等. 生物炭对我国南方红壤和黄棕壤理化性质的影响[J]. 中国生态农业学报, 2013, 21(8): 71-76.
[14]  Song, J., Messele, S.A., Meng, L., Huang, Z. and Gamal El-Din, M. (2021) Adsorption of Metals from Oil Sands Process Water (OSPW) under Natural Ph by Sludge-Based Biochar/Chitosan Composite. Water Research, 194, Article 116930.
https://doi.org/10.1016/j.watres.2021.116930

[15]  Hou, T., Yan, L., Li, J., Yang, Y., Shan, L., Meng, X., et al. (2020) Adsorption Performance and Mechanistic Study of Heavy Metals by Facile Synthesized Magnetic Layered Double Oxide/Carbon Composite from Spent Adsorbent. Chemical Engineering Journal, 384, Article 123331.
https://doi.org/10.1016/j.cej.2019.123331

[16]  Bogusz, A., Oleszczuk, P. and Dobrowolski, R. (2015) Application of Laboratory Prepared and Commercially Available Biochars to Adsorption of Cadmium, Copper and Zinc Ions from Water. Bioresource Technology, 196, 540-549.
https://doi.org/10.1016/j.biortech.2015.08.006

[17]  Xu, X., Cao, X., Zhao, L., Wang, H., Yu, H. and Gao, B. (2012) Removal of Cu, Zn, and Cd from Aqueous Solutions by the Dairy Manure-Derived Biochar. Environmental Science and Pollution Research, 20, 358-368.
https://doi.org/10.1007/s11356-012-0873-5

[18]  邓志华, 刘蕊, 李碧青. 不同生物炭的制备及其对重金属和抗生素的吸附性能[J]. 工业水处理, 2025, 45(1): 94-103.
[19]  Zawadzki, J. (1989) Infrared Spectroscopy in Surface Chemistry of Carbons. Chemistry and Physics of Carbon, 21, 147-380.
[20]  Zhang, H., Wang, T., Sui, Z., Zhang, Y., Sun, B. and Pan, W. (2019) Enhanced Mercury Removal by Transplanting Sulfur-Containing Functional Groups to Biochar through Plasma. Fuel, 253, 703-712.
https://doi.org/10.1016/j.fuel.2019.05.068

[21]  Xiang, J., Lin, Q., Yao, X. and Yin, G. (2021) Removal of Cd from Aqueous Solution by Chitosan Coated MgO-Biochar and Its In-Situ Remediation of Cd-Contaminated Soil. Environmental Research, 195, Article 110650.
https://doi.org/10.1016/j.envres.2020.110650

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133