|
“电化学原理与应用”的课程思政探索——以“燃料电池”为例
|
Abstract:
“电化学原理与应用”是新能源材料与器件专业的专业基础课程之一,在“电化学原理与应用”课程中进行课程思政对于培养学生正确的世界观、价值观、人生观和良好的职业操守等,具有重要的意义。本文以《电化学原理与应用》课程中的“燃料电池”为例,通过将燃料电池的研发进程和国内外科学家在该领域研究的故事有机结合,激发学生的学习兴趣,培养学生的社会责任感、爱国主义精神、坚定理想信念、突破自我、勇攀高峰、锲而不舍、勇于创新、积极探索科学原理的科学精神。鼓励学生积极投身于科研事业当中,为我国氢燃料电池解决“卡脖子”技术问题。
“Electrochemical Principles and applications” is one of the basic courses for the major of new energy materials and devices. It is of great significance to carry out curriculum thinking and politics in the course of “Electrochemical Principles and Applications” for cultivating students’ correct world outlook, values, outlook on life and good professional ethics. This paper takes the “Fuel Cell” in the course of “Principles and Applications of Electrochemistry” as an example, by organically combining the research and development process of fuel cell with the research stories of domestic and foreign scientists in this field, to stimulate students’ learning interest. Cultivate students’ scientific spirit of social responsibility, patriotism, firm ideals and beliefs, self-breakthrough, climbing peaks, perseverance, innovation and active exploration of scientific principles. Students are encouraged to actively devote themselves to scientific research to solve the “stuck neck” technical problems for hydrogen fuel cells in China.
[1] | 吴晶, 胡浩. 习近平在全国高校思想政治工作会议上强调把思想政治工作贯穿教育教学全过程开创我国高等教育事业发展新局面[J]. 中国高等教育, 2016(24): 5-7. |
[2] | 张克宇, 姚耀春, 徐明丽, 李银, 梁风, 张少泽. 化学电源课程思政教学探索与实践——以绪论教学为例[J]. 大学教育, 2024(10): 89-93. |
[3] | 高帷韬, 雷一杰, 张勋, 胡晓波, 宋平平, 赵卿, 王诚, 毛宗强. 质子交换膜燃料电池研究进展[J]. 化工进展, 2022, 41(3): 1539-1555. |
[4] | 衣宝廉. 中国燃料电池研究的开拓者[J]. 科技创新与品牌, 2015(9): 14-18. |
[5] | 王敏键, 陈四国, 邵敏华, 魏子栋. 氢燃料电池电催化剂研究进展[J]. 化工进展, 2021, 40(9): 4948-4961. |
[6] | Wang, X.X., Swihart, M.T. and Wu, G. (2019) Achievements, Challenges and Perspectives on Cathode Catalysts in Proton Exchange Membrane Fuel Cells for Transportation. Nature Catalysis, 2, 578-589. https://doi.org/10.1038/s41929-019-0304-9 |
[7] | Jiao, P., Ye, D., Zhu, C., Wu, S., Qin, C., An, C., et al. (2022) Non-Precious Transition Metal Single-Atom Catalysts for the Oxygen Reduction Reaction: Progress and Prospects. Nanoscale, 14, 14322-14340. https://doi.org/10.1039/d2nr03687h |
[8] | Cui, J., Chen, Q., Li, X. and Zhang, S. (2021) Recent Advances in Non-Precious Metal Electrocatalysts for Oxygen Reduction in Acidic Media and Pemfcs: An Activity, Stability and Mechanism Study. Green Chemistry, 23, 6898-6925. https://doi.org/10.1039/d1gc01040a |
[9] | Bhuvanendran, N., Ravichandran, S., Lee, S., Sanij, F.D., Kandasamy, S., Pandey, P., et al. (2024) Recent Progress in Pt-Based Electrocatalysts: A Comprehensive Review of Supported and Support-Free Systems for Oxygen Reduction. Coordination Chemistry Reviews, 521, Article 216191. https://doi.org/10.1016/j.ccr.2024.216191 |