全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

玉米秸秆生物炭掺杂Pebax 1657混合基质膜分离CO2性能
CO2 Separation Performance of Corn Stalk Biochar-Doped Pebax 1657 Mixed Matrix Membranes

DOI: 10.12677/ojns.2025.132034, PP. 329-337

Keywords: CO2分离,生物炭,Pebax 1657,混合基质膜
CO2 Separation
, Biochar, Pebax 1657, Mixed Matrix Membrane

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着人类社会发展,CO2的过量排放造成了温室效应的加剧。我国作为农业大国,秸秆产量巨大但资源化利用水平不高。本文以玉米秸秆为原材料制备了生物炭,掺入Pebax 1657中制成混合基质膜(MMMs)用于CO2分离纯化和玉米秸秆高价值利用。结果表明,与纯Pebax 1657膜相比,生物炭填料的掺入提升了MMMs的性能,且随着掺杂比的提升气体分离性能呈现上升趋势。在掺杂比为4 wt%时性能最佳。玉米秸秆生物炭最佳CO2渗透系数和选择性分别为125.7 Barrer和81.78,相比纯Pebax 1657膜提升了69%和34%。生物炭掺杂Pebax 1657混合基质膜具有良好的分离CO2性能。
With the development of human society, the excessive emission of CO2 has exacerbated the greenhouse effect. As a large agricultural country, straw production of China is huge, but its resource utilization level remains low. In this study, biochar was prepared from corn stalk, and then dopped into Pebax 1657 to produce mixed matrix membranes (MMMs), the obtained MMMs was used for CO2 separation from gas mixture. The results show that, compared to pure Pebax 1657 membranes, the doping of biochar enhanced the CO2 separation performance of MMMs. Additionally, the CO2 separation performance increased with elevating the doping rate, the best performance was achieved at a doping ratio of 4 wt%. The optimal CO2 permeability and selectivity of MMMs were 125.7 Barrer and 81.78, respectively, which separately improved 69% and 34% compared to pure Pebax 1657 membranes. Biochar-doped Pebax 1657 mixed matrix membranes exhibit excellent CO2 separation performance.

References

[1]  Wang, J. and Azam, W. (2024) Natural Resource Scarcity, Fossil Fuel Energy Consumption, and Total Greenhouse Gas Emissions in Top Emitting Countries. Geoscience Frontiers, 15, Article 101757.
https://doi.org/10.1016/j.gsf.2023.101757
[2]  Abbasi, K.R., Shahbaz, M., Zhang, J., Irfan, M. and Alvarado, R. (2022) Analyze the Environmental Sustainability Factors of China: The Role of Fossil Fuel Energy and Renewable Energy. Renewable Energy, 187, 390-402.
https://doi.org/10.1016/j.renene.2022.01.066
[3]  Schleussner, C., Ganti, G., Rogelj, J. and Gidden, M.J. (2022) An Emission Pathway Classification Reflecting the Paris Agreement Climate Objectives. Communications Earth & Environment, 3, Article No. 135.
https://doi.org/10.1038/s43247-022-00467-w
[4]  Krogh, A., Junginger, M., Shen, L., Grue, J. and Pedersen, T.H. (2024) Climate Change Impacts of Bioenergy Technologies: A Comparative Consequential LCA of Sustainable Fuels Production with CCUS. Science of the Total Environment, 940, Article 173660.
https://doi.org/10.1016/j.scitotenv.2024.173660
[5]  Kätelhön, A., Meys, R., Deutz, S., Suh, S. and Bardow, A. (2019) Climate Change Mitigation Potential of Carbon Capture and Utilization in the Chemical Industry. Proceedings of the National Academy of Sciences, 116, 11187-11194.
https://doi.org/10.1073/pnas.1821029116
[6]  Desport, L. and Selosse, S. (2022) An Overview of CO2 Capture and Utilization in Energy Models. Resources, Conservation and Recycling, 180, Article 106150.
https://doi.org/10.1016/j.resconrec.2021.106150
[7]  Hou, R., Fong, C., Freeman, B.D., Hill, M.R. and Xie, Z. (2022) Current Status and Advances in Membrane Technology for Carbon Capture. Separation and Purification Technology, 300, Article 121863.
https://doi.org/10.1016/j.seppur.2022.121863
[8]  Jiang, L., Liu, W., Wang, R.Q., Gonzalez-Diaz, A., Rojas-Michaga, M.F., Michailos, S., et al. (2023) Sorption Direct Air Capture with CO2 Utilization. Progress in Energy and Combustion Science, 95, Article 101069.
https://doi.org/10.1016/j.pecs.2022.101069
[9]  Dong, Y., Wu, H., Yang, F. and Gray, S. (2022) Cost and Efficiency Perspectives of Ceramic Membranes for Water Treatment. Water Research, 220, Article 118629.
https://doi.org/10.1016/j.watres.2022.118629
[10]  Imtiaz, A., Othman, M.H.D., Jilani, A., Khan, I.U., Kamaludin, R. and Samuel, O. (2022) ZIF-Filler Incorporated Mixed Matrix Membranes (MMMs) for Efficient Gas Separation: A Review. Journal of Environmental Chemical Engineering, 10, Article 108541.
https://doi.org/10.1016/j.jece.2022.108541
[11]  Dai, Y., Niu, Z., Luo, W., Wang, Y., Mu, P. and Li, J. (2023) A Review on the Recent Advances in Composite Membranes for CO2 Capture Processes. Separation and Purification Technology, 307, Article 122752.
https://doi.org/10.1016/j.seppur.2022.122752
[12]  Ding, R., Wang, Q., Ruan, X., Dai, Y., Li, X., Zheng, W., et al. (2022) Novel and Versatile PEI Modified ZIF-8 Hollow Nanotubes to Construct CO2 Facilitated Transport Pathway in MMMs. Separation and Purification Technology, 289, Article 120768.
https://doi.org/10.1016/j.seppur.2022.120768
[13]  Shah Buddin, M.M.H. and Ahmad, A.L. (2021) A Review on Metal-Organic Frameworks as Filler in Mixed Matrix Membrane: Recent Strategies to Surpass Upper Bound for CO2 Separation. Journal of CO2 Utilization, 51, Article 101616.
https://doi.org/10.1016/j.jcou.2021.101616
[14]  Ahmad, M.Z., Martin-Gil, V., Supinkova, T., Lambert, P., Castro-Muñoz, R., Hrabanek, P., et al. (2021) Novel MMM Using CO2 Selective SSZ-16 and High-Performance 6FDA-Polyimide for CO2/CH4 Separation. Separation and Purification Technology, 254, Article 117582.
https://doi.org/10.1016/j.seppur.2020.117582
[15]  Torres, A., Soto, C., Carmona, F.J., Simorte, M.T., Sanz, I., Muñoz, R., et al. (2024) Enhancing Permeability: Unraveling the Potential of Microporous Organic Polymers in Mixed Matrix Membranes. ACS Applied Polymer Materials, 6, 9088-9098.
https://doi.org/10.1021/acsapm.4c01379
[16]  Zheng, W., Ding, R., Dai, Y., Ruan, X., Li, X., Jiang, X., et al. (2023) Regulating the Pore Engineering of MOFs by the Confined Dissolving of PSA Template to Improve CO2 Capture. Journal of Membrane Science, 670, Article 121373.
https://doi.org/10.1016/j.memsci.2023.121373
[17]  Shin, J.E., Lee, S.K., Cho, Y.H. and Park, H.B. (2019) Effect of PEG-MEA and Graphene Oxide Additives on the Performance of Pebax 1657 Mixed Matrix Membranes for CO2 Separation. Journal of Membrane Science, 572, 300-308.
https://doi.org/10.1016/j.memsci.2018.11.025
[18]  Karahan, H.E., Goh, K., Zhang, C., Yang, E., Yıldırım, C., Chuah, C.Y., et al. (2020) MXene Materials for Designing Advanced Separation Membranes. Advanced Materials, 32, Article 1906697.
https://doi.org/10.1002/adma.201906697
[19]  Pazani, F., Salehi Maleh, M., Shariatifar, M., Jalaly, M., Sadrzadeh, M. and Rezakazemi, M. (2022) Engineered Graphene-Based Mixed Matrix Membranes to Boost CO2 Separation Performance: Latest Developments and Future Prospects. Renewable and Sustainable Energy Reviews, 160, Article 112294.
https://doi.org/10.1016/j.rser.2022.112294
[20]  Liang, Y., Yu, C., Yang, X. and Qiao, Z. (2024) Preparation of Ultrathin and Highly Loaded MOF Mixed Matrix Membranes with Honeycomb-Like Structure via Ordered Array Self-assembly. Chemical Engineering Journal, 485, Article 149749.
https://doi.org/10.1016/j.cej.2024.149749
[21]  He, X., Huang, Y., An, M., Fu, J., Wu, D., Qi, S., et al. (2024) Electric-Field-Assisted Arrangement of Carbon Nanotube Inside PDMS Membrane Matrix for Efficient Bio-Ethanol Recovery via Pervaporation. Separation and Purification Technology, 334, Article 125952.
https://doi.org/10.1016/j.seppur.2023.125952
[22]  Hassan, N.S., Jalil, A.A., Bahari, M.B., Khusnun, N.F., Aldeen, E.M.S., Mim, R.S., et al. (2023) A Comprehensive Review on Zeolite-Based Mixed Matrix Membranes for CO2/CH4 Separation. Chemosphere, 314, Article 137709.
https://doi.org/10.1016/j.chemosphere.2022.137709
[23]  Dai, Y., Fang, T., Li, S., Wang, Y., Zhong, S., Su, W., et al. (2024) Mixed-Matrix Membranes Based on Semi-Oxidation MXene Modified G-C3N4 Nanosheet for Enhanced CO2 Separation. Separation and Purification Technology, 348, Article 127776.
https://doi.org/10.1016/j.seppur.2024.127776
[24]  Chen, Z., Zhang, P., Wu, H., Sun, S., You, X., Yuan, B., et al. (2022) Incorporating Amino Acids Functionalized Graphene Oxide Nanosheets into Pebax Membranes for CO2 Separation. Separation and Purification Technology, 288, Article 120682.
https://doi.org/10.1016/j.seppur.2022.120682
[25]  Ding, Y., Dai, Y., Wang, H., Yang, X., Yu, M., Zheng, W., et al. (2024) Synergistic Improvement in Gas Separation Performance of MMMs by Porogenic Action and Strong Molecular Forces of ZIF-93. Separation and Purification Technology, 345, Article 127214.
https://doi.org/10.1016/j.seppur.2024.127214
[26]  戴欢涛, 游新秀, 徐浩亮, 等. 铁浸渍竹子生物炭吸附CO2特性研究[J]. 能源化工, 2023, 44(5): 10-15.
[27]  张学杨, 徐浩亮, 戴欢涛, 等. 微波辐照木质素浸渍生物炭吸附CO2性能[J]. 中国环境科学, 2023, 43(8): 4427-4436.
[28]  刘淑军, 李冬初, 黄晶, 等. 近30年来我国小麦和玉米秸秆资源时空变化特征及还田减肥潜力[J]. 中国农业科学, 2023, 56(16): 3140-3155.
[29]  Cao, L., Zhang, X., Xu, Y., Xiang, W., Wang, R., Ding, F., et al. (2022) Straw and Wood Based Biochar for CO2 Capture: Adsorption Performance and Governing Mechanisms. Separation and Purification Technology, 287, Article 120592.
https://doi.org/10.1016/j.seppur.2022.120592
[30]  Ding, R., Li, Z., Dai, Y., Li, X., Ruan, X., Gao, J., et al. (2022) Boosting the CO2/N2 Selectivity of MMMs by Vesicle Shaped ZIF-8 with High Amino Content. Separation and Purification Technology, 298, Article 121594.
https://doi.org/10.1016/j.seppur.2022.121594
[31]  Wang, H., Ding, Y., Ning, M., Yu, M., Zheng, W., Ruan, X., et al. (2023) Amino-functional CPL-1 with Abundant CO2-Philic Groups to Enhance MMM-Based CO2 Separation. Separation and Purification Technology, 322, Article 124227.
https://doi.org/10.1016/j.seppur.2023.124227
[32]  Zhang, X., Gao, B., Fang, J., Zou, W., Dong, L., Cao, C., et al. (2019) Chemically Activated Hydrochar as an Effective Adsorbent for Volatile Organic Compounds (VOCs). Chemosphere, 218, 680-686.
https://doi.org/10.1016/j.chemosphere.2018.11.144
[33]  Luo, W., Hou, D., Guan, P., Li, F., Wang, C., Li, H., et al. (2024) Pebax Membranes-Based on Different Two-Dimensional Materials for CO2 Capture: A Review. Separation and Purification Technology, 340, Article 126744.
https://doi.org/10.1016/j.seppur.2024.126744
[34]  Lin, D., Xiao, L., Qin, W., Loy, D.A., Wu, Z., Chen, H., et al. (2022) Preparation, Characterization and Antioxidant Properties of Curcumin Encapsulated Chitosan/Lignosulfonate Micelles. Carbohydrate Polymers, 281, Article 119080.
https://doi.org/10.1016/j.carbpol.2021.119080
[35]  谢丽梅, 韩欣妍, 刘亦嘉, 等. 纳米铁复合生物炭与砷在土壤中的共迁移行为[J]. 中国环境科学, 2025: 1-11.
https://doi.org/10.19674/j.cnki.issn1000-6923.20250109.006, 2025-03-08.
[36]  Serrano-Lotina, A., Portela, R., Baeza, P., Alcolea-Rodriguez, V., Villarroel, M. and Ávila, P. (2023) Zeta Potential as a Tool for Functional Materials Development. Catalysis Today, 423, Article 113862.
https://doi.org/10.1016/j.cattod.2022.08.004
[37]  曾子弱, 李凯, 李晓康, 等. 竹基生物炭制备方法及其对苯吸附的影响研究[J]. 北京大学学报(自然科学版), 2024: 1-13.
https://doi.org/10.13209/j.0479-8023.2024.112, 2025-03-08.
[38]  孙晓, 石林, 张凰, 等. 不同温度玉米秸秆生物炭对eDNA的吸附机制[J]. 环境化学, 2024: 1-10.
http://kns.cnki.net/kcms/detail/11.1844.X.20241212.1012.002.html, 2025-03-08.
[39]  宁梦佳, 代岩, 郗元, 等. Cu(Qc)2强化Pebax混合基质膜分离CO2 [J]. 化工进展, 2021, 40(10): 5652-5659.
[40]  赵烨, 丘晓琳, 王杰, 等. 胺化木质素磺酸钠插层水滑石/Pebax混合基质膜的制备及气体分离性能研究[J]. 化工新型材料, 2024, 52(3): 102-108.
[41]  Du, X., Feng, S., Luo, J., Zhuang, Y., Song, W., Li, X., et al. (2023) Pebax Mixed Matrix Membrane with Bimetallic CeZr-MOFs to Enhance CO2 Separation. Separation and Purification Technology, 322, Article 124251.
https://doi.org/10.1016/j.seppur.2023.124251
[42]  Zhao, D., Ren, J., Qiu, Y., Li, H., Hua, K., Li, X., et al. (2015) Effect of Graphene Oxide on the Behavior of Poly(Amide-6-b-ethylene Oxide)/Graphene Oxide Mixed-Matrix Membranes in the Permeation Process. Journal of Applied Polymer Science, 132.
https://doi.org/10.1002/app.42624
[43]  Feng, L., Zhang, Q., Su, J., Ma, B., Wan, Y., Zhong, R., et al. (2023) Graphene-Oxide-Modified Metal-Organic Frameworks Embedded in Mixed-Matrix Membranes for Highly Efficient CO2/N2 Separation. Nanomaterials, 14, Article 24.
https://doi.org/10.3390/nano14010024

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133