全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

近二十年汉江中下干流主要污染物通量时空变化趋势分析
Analysis on the Spatio-Temporal Changes of Main Pollutant Fluxes in the Middle and Lower Reaches of Hanjiang River in the Past Two Decades

DOI: 10.12677/jwrr.2025.141006, PP. 48-57

Keywords: 汉江中下游干流,丹江口水利枢纽,污染物浓度,通量,相关性
The Middle and Lower Reaches of Hanjiang River
, Danjiangkou Water Conservancy Hub, Concentration of Pollutants, Flux, Correlation

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了探索丹江口水利枢纽大坝加高前后汉江中下游干流主要污染物通量变化趋势,基于2004~2023年汉江中下游干流重要控制断面主要污染物及径流量监测数据,分析各断面水质、径流量以及污染物通量逐年变化规律,采用Spearman相关性分析法评估污染物通量与径流量相关性特征。结果表明:2004~2023年汉江中下游干流沿程各断面主要污染物高锰酸盐指数、氨氮浓度年际变化均呈现总体下降趋势,而总磷浓度年际变化不明显,但各断面总磷浓度波动范围进一步减小,水体质量更加趋于稳定;与汉江下游干流断面相比,汉江中游干流断面年径流量和主要污染物年通量特征值变化趋势一致性更高;汉江中下游干流主要污染物指标中高锰酸盐指数和总磷通量与径流量呈极显著性相关,氨氮通量与径流量呈显著性相关,因汉江干流水体含沙量本底较低,而丹江口水利枢纽坝体的拦截更进一步降低下游河道泥沙含量,因此很大程度上削弱了输沙量对汉江中下游干流总磷输移的影响。研究成果可为汉江中下游可持续发展和水资源保护提供科学支撑。
In order to explore the trend of pollutant flux changes in the middle and lower reaches of the Hanjiang River before and after the dam elevation of the Danjiangkou Water Control Hub, based on the monitoring data of pollutants and runoff in important control sections from 2004 to 2023, the annual changes in water quality, runoff, and pollutant flux of each section were analyzed, and Spearman correlation analysis method was used to evaluate the correlation characteristics between pollutant flux and runoff. The results from 2004 to 2023, the annual variation of permanganate index and ammonia nitrogen concentration of major pollutants along the middle and lower reaches of the Hanjiang River showed an overall downward trend, while the annual variation of total phosphorus concentration was not significant. However, the fluctuation range of total phosphorus concentration in each section further decreased, and the water mass tended to be more stable. Compared with the cross-section of the lower reaches of the Hanjiang River, the annual runoff and pollutant annual flux characteristic values of the cross-section of the middle reaches of the Hanjiang River had higher consistency. The main pollutant indicators in the middle and lower reaches, including the permanganate index and total phosphorus flux, were significantly correlated with runoff, while the ammonia nitrogen flux was significantly correlated with runoff. The reason is that the cement and sand content in the Hanjiang River main stream is low, and the interception effect of the Danjiangkou Water Control Hub dam further leads to year-round water discharge, which greatly weakens the impact of sediment transport on the total phosphorus transport in the middle and lower reaches of the Hanjiang River. The research results can provide scientific support for appropriate development and water resource protection in the middle and lower reaches of the Hanjiang River.

References

[1]  李建, 尹炜, 贾海燕, 等. 汉江中下游硅藻水华研究进展与展望[J]. 水生态学杂志, 2020, 41(5): 136-144.
[2]  何术锋, 佘星源, 林育青, 等. 汉江中下游水质时空特征及环境流量确定[J]. 水力发电学报, 2024, 43(11): 17-26.
[3]  卢金友, 林莉. 汉江生态经济带水生态环境问题及对策[J]. 环境科学研究, 2020, 33(5): 1179-1186.
[4]  张胜, 林莉, 王珍, 等. 汉江中下游丰枯水期水质时空变化特征[J]. 长江科学院院报, 2021, 38(8): 47-53.
[5]  洪兴骏, 余蔚卿, 任金秋, 等. 丹江口水利枢纽汛期运行水位优化研究与应用[J]. 人民长江, 2022, 53(2): 27-34.
[6]  朱艳容, 吴哲, 王峰. 丹江口水库水质现状及水资源可持续发展策略探讨[J]. 水利水电快报, 2016, 37(11): 10-11+16.
[7]  王珍. 汉江中下游水质沿程变化规律及污染成因分析[D]: [硕士学位论文]. 武汉: 长江科学院, 2021.
[8]  秦听听, 徐鑫, 王盈心, 等. 水运枢纽梯级开发对汉江中下游水质时空变化影响分析[J]. 水道港口, 2024, 45(2): 206-214.
[9]  程兵芬, 张远, 夏瑞, 等. 汉江中下游水质时空变异与驱动因素识别[J]. 环境科学, 2021, 42(9): 4211-4221.
[10]  陈峰, 王文静, 何涛, 等. 汉江中下游水华发展新形势及治理对策分析[J]. 人民长江, 2023, 54(10): 7-17.
[11]  黄振伟. 南水北调中线工程丹江口水利枢纽大坝加高工程地质勘察[C]//水利水电工程勘测设计新技术应用. 武汉: 长江勘测规划设计研究有限责任公司, 2018: 13.
[12]  彭祥. 南水北调工程总体规划前期论证历程总结、分析与评价[J]. 中国水利, 2024(8): 14-24+32.
[13]  董付强, 穆青青, 王伟, 等. 丹江口水利枢纽汛末提前蓄水方案研究[J]. 水利水电快报, 2023, 44(9): 79-85.
[14]  任实, 高宇. 三峡工程泥沙问题研究进展与展望[J]. 湖泊科学, 2024, 36(6): 1611-1625.
[15]  张为, 黎睿, 王丹阳, 等. 上游梯级水库建成运行对长江总磷输移影响分析及管控对策建议[J]. 湖泊科学, 2024, 36(6): 1-13.
[16]  易沅壁. 大坝拦截下河流有机碳转化机制研究——以珠江梯级水库为例[D]: [博士学位论文]. 天津: 天津大学, 2022.
[17]  王文静, 周才金, 聂真真, 等. 汉江襄阳河段主要污染物通量分析[J]. 水利水电快报, 2021, 42(3): 68-73.
[18]  秦灏, 柳子豪, 姚杰夫, 等. 入太湖污染物通量削减目标下水工程调控优化探究[J]. 人民长江, 2024, 55(5): 75-83.
[19]  朱艳容, 龙雪峰, 方文宏. 汉江干流中游断面污染物通量估算方法研究[J]. 水利技术监督, 2018(6): 178-180.
[20]  余启辉, 林莉, 金海洋, 等. 丹江口水库氮磷时空分布特征及水质安全保障对策[J]. 中国水利, 2024(20): 59-66.
[21]  富国, 雷坤. 河流污染物通量估算方法分析(II)——时空平均离散通量误差判断[J]. 环境科学研究, 2003, 16(1): 5-9, 42.
[22]  娄保锋, 卓海华, 周正, 等. 近18年长江干流水质和污染物通量变化趋势分析[J]. 环境科学研究, 2020, 33(5): 1150-1162.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133