全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

西江与东江水文干旱遭遇风险研究
Hydrological Drought Encounter Risk between the Xijiang River and Dongjiang River

DOI: 10.12677/jwrr.2025.141005, PP. 39-47

Keywords: 水文干旱,联合分布,条件概率,西江,东江
Hydrological Drought
, Joint Distribution, Conditional Probability, Xijiang River, Dongjiang River

Full-Text   Cite this paper   Add to My Lib

Abstract:

水资源分布与生产力布局不相匹配,是我国珠江流域的突出水情,保障下游城市供水安全已成为社会经济可持续发展的重要问题。本文基于西江下游高要站和东江下游博罗站的月径流量数据开展西江与东江的水文干旱遭遇风险研究。研究结果表明,西江与东江同时遭遇水文干旱的风险较高,其中同时遭遇轻旱、中旱、中旱和特旱以上级别的重现期分别为0.5年、1年、3年和11年,但同时遭遇极旱的风险则较低。此外,在西江出现旱情的条件下,东江出现轻旱和中旱的风险较高,但出现特旱和极旱的风险较低。西江与东江的水文干旱风险遭遇规律可为广东省“西水东调”项目实施和水资源合理调度提供科学参考。
The mismatch between water resource distribution and productivity layout is a prominent water situation in the Pearl River Basin of China. Ensuring water supply security for downstream cities has become a crucial issue for sustainable socio-economic development. Based on monthly runoff data from the Gaoyao station in the lower reaches of the Xijiang River and the Boluo station in the lower reaches of the Dongjiang River, this paper conducts a study on the risk of hydrological drought encounters between the Xijiang River and the Dongjiang River. The results indicate that there is a high risk of simultaneous hydrological droughts in both rivers, with return periods for simultaneous mild, moderate, severe, and extreme droughts being 0.5 years, 1 year, 3 years, and 11 years respectively. However, the risk of simultaneous extreme droughts is relatively low. Furthermore, under the condition of drought in the Xijiang River, the risks of mild and moderate droughts in the Dongjiang River are higher, while the risks of severe and extreme droughts are lower. The patterns of hydrological drought risk encounters between the Xijiang River and the Dongjiang River provide a scientific reference for the implementation of the “West-to-East Water Diversion” project in Guangdong Province and the appropriate scheduling of water resources.

References

[1]  夏军. 变化环境下长江流域滨海城市供水安全与适应性对策[J]. 南水北调与水利科技, 2024, 22(2): 209-214.
[2]  刘鹏强, 许毅鹏. 2023年珠江流域水旱灾害防御工作[J]. 中国防汛抗旱, 2023, 33(12): 25-27.
[3]  广东省水利厅. 科学调配东江水资源保障粤港供水安全的实践与探索[J]. 中国水利, 2020(21): 43-44, 78.
[4]  张灵, 吴恩捷, 潘浩桦, 等. 1960-2020年珠江流域跨季节尺度干旱时空变化[J]. 农业工程学报, 2024, 40(13): 77-84.
[5]  谢育廷, 涂新军, 吴海鸥, 等. 东江流域干旱等级演变及主要因子影响[J]. 自然灾害学报, 2020, 29(4): 69-82.
[6]  涂新军, 庞万宁, 陈晓宏, 等. 传统旱涝急转评估指数的局限和改进[J]. 水科学进展, 2022, 33(4): 592-601.
[7]  陈毓灵, 刘丙军. 西江流域水文气象综合干旱评价[J]. 水电能源科学, 2022, 40(3): 17-21.
[8]  孔兰, 蒋任飞, 杨磊, 等. 西、北、东江水资源特性分析[J]. 中国农村水利水电, 2017(7): 120-123, 128.
[9]  吴志勇, 白博宇, 何海, 等. 珠江流域1981-2020年水文干旱时空特征分析[J]. 河海大学学报(自然科学版), 2023, 51(1): 1-9.
[10]  ZHAO, R. X., WANG, H. X., HU, S., et al. Joint probability of drought encounter among three major grain production zones of China under nonstationary climate. Journal of Hydrology, 2021, 603: 126995.
https://doi.org/10.1016/j.jhydrol.2021.126995
[11]  LU, J., QIN, T. L., YAN, D. H., et al. Drought and wetness events encounter and cascade effect in the Yangtze River and Yellow River Basin. Journal of Hydrology, 2024, 639: 131608.
https://doi.org/10.1016/j.jhydrol.2024.131608
[12]  陈子燊, 黄强, 刘曾美. 变化环境下西江北江枯水流量联合分布分析[J]. 水科学进展, 2015, 26(1): 20-26.
[13]  袁飞, 章益棋, 刘懿, 等. 基于标准化帕尔默干旱指数的西江流域干旱评估[J]. 水资源保护, 2021(1): 46-52.
[14]  廖叶颖, 李崇勇. 东江流域2020-2022年水文干旱分析[J]. 水资源开发与管理, 2024(12): 26-30.
[15]  陈子燊, 刘占明, 黄强. 西江水文干旱历时与强度的遭遇概率分析[J]. 湖泊科学, 2013, 25(4): 576-582.
[16]  李敏, 李建柱, 冯平, 等. 变化环境下时变标准化径流指数的构建与应用[J]. 水利学报, 2018, 49(11): 1386-1395.
[17]  李帅, 曾凌, 熊斌, 等. 长江上游近61年来水文干旱演变特征及归因[J]. 水力发电学报, 2024, 43(2): 33-45.
[18]  KAO, S. C., GOVINDARAJU, R. S. A copula-based joint deficit index for droughts. Journal of Hydrology, 2010, 380(1): 121-134.
https://doi.org/10.1016/j.jhydrol.2009.10.029
[19]  SANOS, J. F., PULIDO-CALVO, I. and PORTELA, M. M. Spatial and temporal variability of droughts in Portugal. Water Resource Research, 2010, 46: W03503.
https://doi.org/10.1029/2009wr008071
[20]  黄强, 陈子燊, 孔兰, 等. 联合干旱指数在干旱监测中的应用——以广东韶关地区为例[J]. 干旱气象, 2014, 32(4): 499-504.
[21]  周平, 周玉良, 金菊良, 等. 水文双变量重现期分析及在干旱中应用[J]. 水科学进展, 2019, 30(3): 382-391.
[22]  刘章君, 郭生练, 许新发, 等. Copula函数在水文水资源中的研究进展与述评[J]. 水科学进展, 2021, 32(1): 148-159.
[23]  田忆, 杨云川, 谢鑫昌, 等. 基于SWAP及多维联合概率的广西气象干旱频率分析[J]. 水文, 2022, 42(4): 83-89, 95.
[24]  NELSEN, R. B. An introduction to copulas. 2nd Edition. New York: Springer, 2006.
[25]  HUANG, Q., LI, J. H. and GAO, J. S. The risks assessment via a regional approach using multivariate regional frequency clustering method. Cluster Computing, 2017, 20: 3441-3457.
https://doi.org/10.1007/s10586-017-1126-7
[26]  AKAIKE, H. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 1974, 19(6): 716-723.
https://doi.org/10.1109/tac.1974.1100705
[27]  张浪, 贺中华, 夏传花, 等. 基于时变Copula模型的多尺度气象干旱、水文干旱特征及其概率分析——以黔中水利工程区为例[J]. 水土保持研究, 2021, 28(6): 115-125, 130.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133