全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

流域异常雨量站点检测对水文模型模拟精度影响研究
Study on the Influence of Abnormal Rainfall Station Detection on Hydrological Model Simulation Accuracy

DOI: 10.12677/jwrr.2025.141002, PP. 12-22

Keywords: 雨量站,异常检测,降雨过程指数,新安江模型,DBSCAN聚类
Rainfall Station
, Anomaly Detection, Rainfall Process Index, Xin’anjiang Model, DBSCAN Clustering

Full-Text   Cite this paper   Add to My Lib

Abstract:

流域内存在异常的雨量站点会影响水文模型输入的质量,进而降低水文模型的模拟精度。为了提高水文模型模拟精度,先通过计算降雨过程缺测指数及相似指数,利用DBSCAN聚类算法对计算的指数进行聚类筛选出缺测异常站点;其次构建集总式新安江模型,对筛选异常雨量站点前后的1 h、3 h、6 h时段长系列流量资料进行模拟比较。乐安河流域的研究结果表明,剔除异常雨量站数据后,纳西效率系数提升了0.07,径流总量相对误差减少18.08%,可提高水文模型的模拟精度。
The presence of abnormal rainfall stations in the basin will affect the quality of input data, and reduce the hydrological simulation accuracy. To improve the hydrological simulation accuracy, this paper attempts to calculate the rainfall process missing index and rainfall process similarity index, and use the DBSCAN clustering algorithm to cluster the calculated index to screen out the missing abnormal stations. The lumped Xin’anjiang model is constructed to simulate the 1 h, 3 h, and 6 h long flow series before and after the screening of abnormal rainfall stations. The application results of the Le’an River basin show: after the abnormal rainfall station data are eliminated, the Nash efficiency coefficient is increased by 0.07, while the relative error of water volume is reduced 18.08%, which can improve hydrological simulation accuracy.

References

[1]  王森, 王霞雨, 贾文豪, 等. 水库智慧调度研究进展与展望[J]. 人民珠江, 2023, 44(10): 25-34.
[2]  BLAZQUEZ-GARCIA, A., CONDE, A., MORI, U., et al. A review on outlier/anomaly detection in time series data. ACM Computing Surveys (CSUR), 2021, 54(3): 1-33.
https://doi.org/10.1145/3444690
[3]  BRAEI, M., WAGNER, S. Anomaly detection in univariate time-series: A survey on the state-of-the-art. 2020.
[4]  齐敏芳. 大数据技术及其在电站机组分析中的应用[D]: [博士学位论文]. 北京: 华北电力大学(北京), 2016.
[5]  杨茂林, 卢炎生. 基于剪枝的海量数据离群点挖掘[J]. 计算机科学, 2012, 39(10): 152-156.
[6]  SENGONUL, E., SAMET, R., ABU AL-HAIJA, Q., et al. An analysis of artificial intelligence techniques in surveillance video anomaly detection: A comprehensive survey. Applied Sciences, 2023, 13(8): 4956.
https://doi.org/10.3390/app13084956
[7]  刘秀林, 张行南, 方园皓, 等. 金沙江下游遥测雨量站数据质量研究[J]. 人民长江, 2019, 50(3): 131-135+171.
[8]  高月明, 林清华, 柳树票, 等. 雨量异常数据的空间维度分析与甄别[J]. 人民珠江, 2022, 43(12): 97-103+154.
[9]  田济扬, 刘含影, 刘荣华, 等. 大规模降雨监测数据异常识别方法[J]. 中国水利水电科学研究院学报(中英文), 2022, 20(5): 438-448.
[10]  CHAUDHARY, U., LIMBU, M. N., KAPHLE, G. C., et al. Statistical analysis of rainfall distribution in Biratnagar, Nepal: A case study. Pragya Darshan, 2023, 5(1): 52-57.
https://doi.org/10.3126/pdmdj.v5i1.52307
[11]  MIAU, S., HUNG, W. H. River flooding forecasting and anomaly detection based on deep learning. IEEE Access, 2020, 8: 198384-198402.
https://doi.org/10.1109/ACCESS.2020.3034875
[12]  CHEN, Z., NI, X., LI, H., et al. FedLGAN: A method for anomaly detection and repair of hydrological telemetry data based on federated learning. PeerJ Computer Science, 2023, 9: e1664.
https://doi.org/10.7717/peerj-cs.1664
[13]  罗朝林, 张波, 孟庆魁, 等. 基于长短时记忆神经网络的水库洪水预报[J]. 人民珠江, 2022, 43(12): 128-134.
[14]  田逸飞, 杨海从, 纪国良, 等. 相似洪水分析与智能推荐模型研究[J]. 水资源研究, 2023, 12(5): 472-485.
[15]  宋董飞, 徐华. DBSCAN算法研究及并行化实现[J]. 计算机工程与应用, 2018, 54(24): 52-56+122.
[16]  赵晓燕. 长江上游降水时空变化特征分析[J]. 地球科学前沿, 2022, 12(11): 1500-1518.
[17]  李露露, 肖天贵, 杨明鑫, 等. 西南地区降水异常的时空分布特征分析[J]. 气候变化研究快报, 2019, 8(6): 12.
[18]  ALI, T., ASGHAR, S. and SAJID, N. A. Critical analysis of DBSCAN variations. In 2010 international conference on information and emerging technologies. IEEE, 2010: 1-6.
https://doi.org/10.1109/ICIET.2010.5625720
[19]  索曼, 迪瓦卡尔, 阿贾伊, 等. 数据挖掘基础教程[M]. 北京: 机械工业出版社, 2009.
[20]  李文杰, 闫世强, 蒋莹, 等. 自适应确定DBSCAN算法参数的算法研究[J]. 计算机工程与应用, 2019, 55(5): 1-7+148.
[21]  周红芳, 王鹏. DBSCAN算法中参数自适应确定方法的研究[J]. 西安理工大学学报, 2012, 28(3): 289-292.
[22]  夏鲁宁, 荆继武. SA-DBSCAN: 一种自适应基于密度聚类算法[J]. 中国科学院大学学报, 2009, 26(4): 530-538.
[23]  JAHIRABADKAR, S., KULKARNI, P. Algorithm to determine ε-distance parameter in density based clustering. Expert Systems with Applications, 2014, 41(6): 2939-2946.
https://doi.org/10.1016/j.eswa.2013.10.025
[24]  KIM, J. H., CHOI, J. H., YOO, K. H., et al. AA-DBSCAN: An approximate adaptive DBSCAN for finding clusters with varying densities. Springer US, 2019, 75(1): 142-169.
https://doi.org/10.1007/s11227-018-2380-z
[25]  KHAN, M. M. R., SIDDIQUE, M. A. B., ARIF, R. B., et al. ADBSCAN: Adaptive density-based spatial clustering of applications with noise for identifying clusters with varying densities. In 2018 4th international conference on electrical engineering and information & communication technology (iCEEiCT). IEEE, 2018: 107-111.
https://doi.org/10.1109/CEEICT.2018.8628138
[26]  杨金艳, 江曾杰, 陈伟, 等. 稳健统计与格拉布斯准则在能力验证结果分析中的应用[J]. 计量学报, 2018, 39(6): 862-867.
[27]  杜勇, 付宇鹏, 韦永江, 等. 红水河龙滩水电站区间河系洪水预报方案研究[J]. 人民珠江, 2024, 45(1): 122-130.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133