|
水库调度模型与优化求解方法研究进展
|
Abstract:
水库调度是兴利避害、发挥水资源综合利用效益的一项重要的非工程措施。随着大批水库电站的建成投运,我国水利水电事业已经进入了由规划设计到管理运行的关键转型期。本文根据水库与决策者之间的交互作用,把水库调度模型归纳为三类,即无策略调度模型、开环策略调度模型、闭环策略调度模型;综述了基于最优控制理论的水库模拟调度和优化求解方法。合理的建模与优化方法能够适应多种目标导向、对不同时空间尺度的水库调度进行模拟仿真,具有重要的研究和应用价值。
Reservoir operation is a crucial non-structural measure for optimizing the benefits of water resource utilization and mitigating adverse impacts. With the completion and commissioning of numerous reservoirs and hydropower stations, a critical transition phase from construction to operational management is going in China. The reservoir operation models are classified into three categories based on the interaction between the reservoir and its managers, i.e., policy-free operation models, open-loop policy operation models, and closed-loop policy operation models. The simulation and optimization techniques based on optimal control theory are systematically reviewed for each model type. These modeling and optimization approaches are capable of generalizing operational behaviors under varying objectives and spatiotemporal scales, which has significant research and application value.
[1] | 万俊. 水资源开发利用[M]. 第二版. 武汉: 武汉大学出版社, 2008. |
[2] | KIRK, D. E. Optimal control theory: An introduction. North Chelmsford: Courier Corporation, 2004. |
[3] | 高桂革. 最优控制理论的发展与展望[J]. 上海电机学院学报, 2005(3): 33-35+39. |
[4] | 郭生练, 陈炯宏, 刘攀, 等. 水库群联合优化调度研究进展与展望[J]. 水科学进展, 2010, 21(4): 496-503. |
[5] | GIULIANI, M., LAMONTAGNE, J. R., REED, P. M., et al. A state-of-the-art review of optimal reservoir control for managing conflicting demands in a changing world. Water Resources Research, 2021, 57(12): e2021WR029927. |
[6] | GIULIANI, M., CASTELLETTI, A. Is robustness really robust? How different definitions of robustness impact decision-making under climate change. Climatic Change, 2016, 135(3): 409-424. |
[7] | QUINN, J. D., REED, P. M., GIULIANI, M., et al. Rival framings: A framework for discovering how problem formulation uncertainties shape risk management trade-offs in water resources systems. Water Resources Research, 2017, 53(8): 7208-7233. |
[8] | SONCINI-SESSA, R., WEBER, E. and CASTELLETTI, A. Integrated and participatory water resources management—Theory. Amsterdam: Elsevier Science, 2007. |
[9] | 张英贵. 径流式水电站调蓄库容的利用[J]. 水力发电学报, 1992(1): 47-50. |
[10] | 刘攀, 郭生练, 郭富强, 等. 清江梯级水库群联合优化调度图研究[J]. 华中科技大学学报(自然科学版), 2008, 36(7): 63-66. |
[11] | TU, M. Y., HSU, N. S. and YEH, W. W. G. Optimization of reservoir management and operation with hedging rules. Journal of Water Resources Planning and Management, 2003, 129(2): 86-97. |
[12] | BAHRAMI, M., BOZORG-HADDAD, O. and CHU, X. Application of cat swarm optimization algorithm for optimal reservoir operation. Journal of Irrigation and Drainage Engineering, 2018, 144(1): 04017057. |
[13] | HADDAD, O. B., HOSSEINI-MOGHARI, S. M. and LOÁICIGA, H. A. Biogeography-based optimization algorithm for optimal operation of reservoir systems. Journal of Water Resources Planning and Management, 2016, 142(1): 04015034. |
[14] | 万文华. 变化环境下的干旱演变与水库适应性调度策略[D]: [博士学位论文]. 北京: 清华大学, 2018. |
[15] | 冯尚友. 水资源持续利用与管理导论[M]. 北京: 科学出版社, 2000. |
[16] | SCATTOLINI, R. Architectures for distributed and hierarchical model predictive control—A review. Journal of Process Control, 2009, 19(5): 723-731. |
[17] | 郭生练, 刘攀, 王俊, 等. 再论水库汛期水位动态控制的必要性和可行性[J]. 水利学报, 2023, 54(1): 1-12. |
[18] | 席裕庚, 李德伟, 林姝. 模型预测控制——现状与挑战[J]. 自动化学报, 2013, 39(3): 222-236. |
[19] | MACIEJOWSKI, J. M. Predictive control with constraints. New York: Pearson College Div., 2000. |
[20] | GALELLI, S., CASTELLETTI, A. and GOEDBLOED, A. High-performance integrated control of water quality and quantity in urban water reservoirs. Water Resources Research, 2015, 51(11): 9053-9072. |
[21] | 尹家波, 郭生练, 顾磊, 等. 中国极端降水对气候变化的热力学响应机理及洪水效应[J]. 科学通报, 2021, 66(33): 4315-4325. |
[22] | 尹家波, 郭生练, 杨妍, 等. 基于陆地水储量异常预估中国干旱及其社会经济暴露度[J]. 中国科学: 地球科学, 2022, 52(10): 2061-2076. |
[23] | GIULIANI, M., CASTELLETTI, A. Assessing the value of cooperation and information exchange in large water resources systems by agent-based optimization. Water Resources Research, 2013, 49(7): 3912-3926. |
[24] | FABER, B. A., STEDINGER, J. R. Reservoir optimization using sampling SDP with ensemble streamflow prediction (ESP) forecasts. Journal of Hydrology, 2001, 249(1): 113-133. |
[25] | SUTTON, R. S., BARTO, A. G. Reinforcement learning: An introduction. Second Edition. Cambridge: Bradford Books, 1998. |
[26] | BELLMAN, R. Dynamic programming. Princeton University Press, 1957. |
[27] | 吴宏宇, 管晓宏, 翟桥柱, 等. 水火电联合短期调度的混合整数规划方法[J]. 中国电机工程学报, 2009, 29(28): 82-88. |
[28] | 《运筹学》教材编写组. 运筹学[M]. 第4版. 北京: 清华大学出版社, 2012. |
[29] | 罗强, 宋朝红, 雷声隆. 水库群系统非线性网络流规划法[J]. 武汉大学学报(工学版), 2001(3): 22-26. |
[30] | BERTSEKAS, D. P. Dynamic programming: deterministic and stochastic models. Englewood Cliffs: Prentice Hall, 1987. |
[31] | CELESTE, A. B., BILLIB, M. Evaluation of stochastic reservoir operation optimization models. Advances in Water Resources, 2009, 32(9): 1429-1443. |
[32] | VICUNA, S., DRACUP, J. A., LUND, J. R., et al. Basin-scale water system operations with uncertain future climate conditions: Methodology and case studies. Water Resources Research, 2010, 46(4): W04505. |
[33] | GIULIANI, M., CASTELLETTI, A., PIANOSI, F., et al. Curses, tradeoffs, and scalable management: Advancing evolutionary multiobjective direct policy search to improve water reservoir operations. Journal of Water Resources Planning and Management, 2016, 142(2): 04015050. |
[34] | CASTELLETTI, A., GALELLI, S., RESTELLI, M., et al. Tree-based reinforcement learning for optimal water reservoir operation. Water Resources Research, 2010, 46(9): W09507. |
[35] | LOUCKS, D. P., VAN BEEK, E., STEDINGER, J. R., et al. Water resources systems planning and management: An introduction to methods, models and applications. Paris: UNESCO, 2005. |
[36] | 梅亚东. 梯级水库防洪优化调度的动态规划模型及解法[J]. 武汉水利电力大学学报, 1999(5): 10-12+91. |
[37] | TSITSIKLIS, J. N., VAN ROY, B. Feature-based methods for large scale dynamic programming. Boston: Springer US, 1996: 59-94. |
[38] | PARDALOS, P. M. Approximate dynamic programming: Solving the curses of dimensionality. Optimization Methods and Software, 2009, 24(1): 155-155. |
[39] | 杨光, 郭生练, 李立平. 考虑生态流量的梯级水库柔性决策研究[J]. 华中科技大学学报(自然科学版), 2015, 43(9): 114-116+122. |
[40] | COHON, J. L., MARKS, D. H. A review and evaluation of multiobjective programing techniques. Water Resources Research, 1975, 11(2): 208-220. |
[41] | ZHA, G., ZHOU, J., YANG, X., et al. Modeling and solving of joint flood control operation of large-scale reservoirs: A case study in the middle and upper Yangtze River in China. Water, 2021, 13(1): 41. |
[42] | 支悦, 艾学山, 董祚, 等. 水库发电优化调度模型的快速求解算法及应用[J]. 水力发电学报, 2020, 39(6): 49-61. |
[43] | 艾学山, 郭佳俊, 穆振宇, 等. 梯级水库群多目标优化调度模型及CPF-DPSA算法研究[J]. 水利学报, 2023, 54(1): 68-78. |
[44] | 王金文, 王仁权, 张勇传, 等. 逐次逼近随机动态规划及库群优化调度[J]. 人民长江, 2002(11): 45-47+54. |
[45] | 郭生练, 何绍坤, 陈柯兵, 等. 长江上游巨型水库群联合蓄水调度研究[J]. 人民长江, 2020, 51(1): 6-10+35. |
[46] | LU, Q., ZHONG, P., XU, B., et al. Stochastic programming for floodwater utilization of a complex multi-reservoir system considering risk constraints. Journal of Hydrology, 2021, 599: 126388. |
[47] | HE, S., GUO, S., YIN, J., et al. A novel impoundment framework for a mega reservoir system in the upper Yangtze River basin. Applied Energy, 2022, 305: 117792. |
[48] | 冯仲恺, 牛文静, 程春田, 等. 大规模水电系统优化调度降维方法理论分析研究[J]. 水利学报, 2017, 48(2): 146-156. |
[49] | KIM, Y. O., EUM, H. I., LEE, E. G., et al. Optimizing operational policies of a Korean multireservoir system using sampling stochastic dynamic programming with ensemble streamflow prediction. Journal of Water Resources Planning and Management, 2007, 133(1): 4-14. |
[50] | TAUXE, G. W., INMAN, R. R. and MADES, D. M. Multiobjective dynamic programing with application to a reservoir. Water Resources Research, 1979, 15(6): 1403-1408. |
[51] | 刘攀, 郭生练, 张文选, 等. 梯级水库群联合优化调度函数研究[J]. 水科学进展, 2007, 18(6): 816-822. |
[52] | FLEMING, P. J., PURSHOUSE, R. C. and LYGOE, R. J. Many-objective optimization: An engineering design perspective. Berlin: Springer, 2005: 14-32. |
[53] | BERTSEKAS, D. P. Dynamic programming and suboptimal control: A survey from ADP to MPC. European Journal of Control, 2005, 11(4): 310-334. |
[54] | DEISENROTH, M. P., NEUMANN, G. and PETERS, J. A survey on policy search for robotics. Foundations and Trends in Robotics, 2013, 2(1-2): 1-142. |
[55] | PEREIRA, M. V. F., PINTO, L. M. V. G. Multi-stage stochastic optimization applied to energy planning. Mathematical Programming, 1991, 52(1): 359-375. |
[56] | WATKINS, C. J. C. H., DAYAN, P. Technical note: Q-learning. Machine Learning, 1992, 8(3): 279-292. |
[57] | ERNST, D., GEURTS, P. and WEHENKEL, L. Tree-based batch mode reinforcement learning. Journal of Machine Learning Research, 2005, 6(18): 503-556. |
[58] | REED, P. M., HADKA, D., HERMAN, J. D., et al. Evolutionary multiobjective optimization in water resources: The past, present, and future. Advances in Water Resources, 2013, 51: 438-456. |
[59] | SUTTON, R. S., MCALLESTER, D., SINGH, S., et al. Policy gradient methods for reinforcement learning with function approximation. In Advances in Neural Information Processing Systems: Vol. 12. Cambridge: MIT Press, 1999: 1057-1063. |
[60] | LUND, J. R., GUZMAN, J. Derived operating rules for reservoirs in series or in parallel. Journal of Water Resources Planning and Management, 1999, 125(3): 143-153. |
[61] | HE, S., GUO, S., YANG, G., et al. Optimizing operation rules of cascade reservoirs for adapting climate change. Water Resources Management, 2020, 34(1): 101-120. |
[62] | WAN, W., ZHAO, J. and WANG, J. Revisiting water supply rule curves with hedging theory for climate change adaptation. Sustainability, 2019, 11(7): 1827. |
[63] | LI, X., LIU, P., WANG, Y., et al. Derivation of operating rule curves for cascade hydropower reservoirs considering the spot market: A case study of the China’s Qing River cascade-reservoir system. Renewable Energy, 2022, 182: 1028-1038. |
[64] | YANG, G., GUO, S., LI, L., et al. Multi-objective operating rules for Danjiangkou reservoir under climate change. Water Resources Management, 2016, 30(3): 1183-1202. |
[65] | HADKA, D., REED, P. Large-scale parallelization of the Borg multiobjective evolutionary algorithm to enhance the management of complex environmental systems. Environmental Modelling & Software, 2015, 69: 353-369. |
[66] | YANG, G., ZAITCHIK, B., BADR, H., et al. A Bayesian adaptive reservoir operation framework incorporating streamflow non-stationarity. Journal of Hydrology, 2021, 594: 125959. |
[67] | HE, S., GUO, S., ZHANG, J., et al. Multi-objective operation of cascade reservoirs based on short-term ensemble streamflow prediction. Journal of Hydrology, 2022, 610: 127936. |
[68] | YANG, G., GUO, S., LIU, P., et al. Integration and evaluation of forecast-informed multiobjective reservoir operations. Journal of Water Resources Planning and Management, 2020, 146(6): 04020038. |
[69] | GIULIANI, M., CROCHEMORE, L., PECHLIVANIDIS, I., et al. From skill to value: Isolating the influence of end user behavior on seasonal forecast assessment. Hydrology and Earth System Sciences, 2020, 24(12): 5891-5902. |
[70] | GIULIANI, M., HERMAN, J. D., CASTELLETTI, A., et al. Many-objective reservoir policy identification and refinement to reduce policy inertia and myopia in water management. Water Resources Research, 2014, 50(4): 3355-3377. |
[71] | GIULIANI, M., MASON, E., CASTELLETTI, A., et al. Universal approximators for direct policy search in multi-purpose water reservoir management: A comparative analysis. IFAC Proceedings Volumes, 2014, 47(3): 6234-6239. |
[72] | YOUNG, G. K. Finding reservoir operating rules. Journal of the Hydraulics Division, 1967, 93(6): 297-322. |
[73] | YANG, G., GUO, S., LIU, P., et al. Multiobjective reservoir operating rules based on cascade reservoir input variable selection method. Water Resources Research, 2017, 53(4): 3446-3463. |
[74] | 钟斯睿, 何彦锋, 郭生练, 等. 雅砻江梯级水库优化调度规则提取研究[J]. 水力发电学报, 2023, 42(10): 50-59. |
[75] | 郭旭宁, 秦韬, 雷晓辉, 等. 水库群联合调度规则提取方法研究进展[J]. 水力发电学报, 2016, 35(1): 19-27. |