|
2024年7月30日乌鲁木齐国际机场一次雷暴天气分析
|
Abstract:
利用常规高空地面、FNL 0.25? × 0.25?再分析资料、地面加密自动站、多普勒雷达及卫星云图资料对2024年7月30日发生乌鲁木齐国际机场的一次雷暴天气进行环流形势分析、环境场诊断和触发机制研究分析,发现:(1) 此次雷雨天气过程是在500 hPa高空偏西气流,有短波活动配合700、850 hPa一定的动力条件、水汽条件和层结不稳定条件共同作用下产生的。(2) 低层水汽不断辐合加强,为雷雨天气提供一定的水汽条件,中层强盛的上升运动有利于雷暴云团的快速发展,沿天山一带上空的K指数揭示大气环境场的不稳定层结,这为雷暴的持续发展提供了较好的能量条件。(3) 此次持续雷雨天气主要由多个对流云团造成,地面风场辐合线的存在是对流云团的初生、发展和演变的触发机制。(4) 多普勒雷达与卫星云图协同监测可提前1~2小时预警雷暴移动路径,较单一数据源预报时效提升40%。本研究通过多源数据融合揭示了乌鲁木齐地区雷暴触发机制的独特性,为机场对流预报提供新思路。
By using conventional upper-air and surface data, FNL 0.25? × 0.25? re-analysis data, surface intensive automatic weather stations, Doppler radar data and satellite cloud imagery data, an analysis of the circulation pattern, environmental field diagnosis and triggering mechanism of a thunderstorm that occurred at Urumqi International Airport on July 30, 2024 was carried out. The findings are as follows: (1) This thunderstorm weather process was generated under the combined effect of the westerly flow at 500 hPa in the upper-air, with the cooperation of short-wave activities, and certain dynamic, water-vapor and stratification instability conditions at 700 hPa and 850 hPa. (2) The continuous convergence and enhancement of low-level water vapor provided certain water-vapor conditions for the thunderstorm weather. The strong upward motion in the middle layer was conducive to the rapid development of thunderstorm cloud clusters. The K-index over the area along the Tianshan Mountains revealed the unstable stratification of the atmospheric environmental field, which provided favorable energy conditions for the continuous development of thunderstorms. (3) This continuous thunderstorm weather was mainly caused by multiple convective cloud clusters. The existence of the convergence line in the surface wind field was the triggering mechanism for the initiation, development and evolution of convective cloud clusters. (4) 1~2 hours, outperforming single-data-source approaches by 40%. This study highlights the unique triggering mechanisms of thunderstorms in mountainous regions, offering insights for improving convective forecasting at airports.
[1] | 李典南, 许东蓓. 双流机场雷暴天气特征及天气形势分类研究[J]. 高原气昂, 2021, 40(5): 1164-1176. |
[2] | 植江玲, 黄先香, 顾伯辉, 等. 广东两次超级单体导致不同类型强风天气对比分析[J]. 气象, 2022, 48(7): 813-825. |
[3] | 于波, 荆浩, 孙继松, 等. 北京夏季一次罕见偏南大风天气的成因分析[J]. 高原气象, 2017, 36(6): 1674-1681. |
[4] | 许爱华, 孙继松, 许东蓓, 等. 中国中东部强对流天气的天气形势分类和基本要素配置特征[J]. 气象, 2014, 40(4): 400-411. |
[5] | 王一童, 王秀明, 俞小鼎. 产生致灾大风的超级单体回波特征[J]. 应用气象学报, 2022, 33(2): 180-191. |
[6] | 卓弘, 王冀, 霍苗, 等. 不同类型大尺度环流背景下首都国际机场的雷暴特征分析[J]. 暴雨灾害, 2016, 35(4): 371-377. |
[7] | 何志强, 卢新平, 王丙兰. 首都机场雷暴大风的初步研究[J]. 气象, 2014, 40(11): 1408-1413. |
[8] | 单乃超, 周后福, 褚保亮, 等. 2017年5月14日合肥地区雷暴大风过程机理分析[J]. 气象与环境学报, 2019, 35(5): 1-9. |
[9] | 丁江钰, 陈小婷, 王建鹏, 等. 福州长乐机场雷暴及风切变天气特征[J]. 干旱气象, 2019, 37(2): 270-276. |
[10] | 胡建军, 张利平, 王春红. 乌鲁木齐国际机场雷暴天气气象要素及风切变特征分析[J]. 中国民航飞行学院学报, 2006, 17(2): 10-14. |
[11] | 李新峰, 陈博, 梅珏. 上海空域一次雷暴天气形成及可预报性分析[J]. 河南科技, 2021, 40(22): 134-138. |