全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于集成学习算法的页岩油藏压裂效果预测
Prediction of Fracturing Efficiency in Shale Oil Reservoirs Based on Ensemble Learning Algorithms

DOI: 10.12677/jsta.2025.132013, PP. 117-129

Keywords: 页岩油藏,压裂效果,集成学习,XGBoost,堆叠法
Shale Oil Reservoir
, Fracturing Performance, Ensemble Learning, XGBoost, Stacking

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究旨在通过集成学习算法对页岩油藏压裂效果进行预测,以提高压裂效果预测的准确性。采用了多种机器学习、深度学习和集成学习模型进行比较,包括线性回归、决策树、XGBoost、LSTM、BP神经网络、投票法、加权投票法、堆叠法等。模型评估指标包括决定系数(R2)、均方误差(MSE)、平均绝对误差(MAE)和均方根误差(RMSE)。实验结果表明,集成学习方法中的堆叠法(Stacking)表现出更优的性能,R2达到0.946,MSE为0.380,MAE为0.383,RMSE为0.616,显著优于单一模型和深度学习模型。通过比较不同模型的性能,本研究表明集成学习方法,特别是堆叠法,能够更有效地提升页岩油藏压裂效果预测的精度。结果为油田开采提供了可靠的预测工具,有助于优化压裂作业和提升生产效率。
This study aims to predict the fracturing performance of shale oil reservoirs using ensemble learning algorithms to improve prediction accuracy. Various machine learning, deep learning, and ensemble learning models were compared, including Linear Regression, Decision Tree, XGBoost, LSTM, BP Neural Network, Voting, Weighted Voting, and Stacking. Model evaluation metrics include R2, Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). Experimental results indicate that the Stacking method in ensemble learning performs the best, with an R2 of 0.946, MSE of 0.380, MAE of 0.383, and RMSE of 0.616, significantly outperforming both individual models and deep learning models. By comparing the performance of different models, this study demonstrates that ensemble learning methods, especially stacking, can more effectively improve the accuracy of prediction of shale oil reservoir fracturing performance. The results provide reliable predictive tools for oilfield development, helping to optimize fracturing operations and improve production efficiency.

References

[1]  薛承瑾. 页岩气压裂技术现状及发展建议[J]. 石油钻探技术, 2011, 39(3): 24-29.
[2]  闫林, 陈福利, 王志平, 等. 我国页岩油有效开发面临的挑战及关键技术研究[J]. 石油钻探技术, 2020, 48(3): 63-69.
[3]  宋俊强, 李晓山, 王硕, 等. 致密油藏压裂水平井产量预测[J]. 新疆石油地质, 2022, 43(5): 580.
[4]  韩珊, 车明光, 苏旺, 等. 四川盆地威远区块页岩气单井产量预测方法及应用[J]. 特种油气藏, 2022, 29(6): 141.
[5]  郭建春, 路千里, 何佑伟. 页岩气压裂的几个关键问题与探索[J]. 天然气工业, 2022, 42(8): 148-161.
[6]  Wang, H. (2016) What Factors Control Shale-Gas Production and Production-Decline Trend in Fractured Systems: A Comprehensive Analysis and Investigation. SPE Journal, 22, 562-581.
https://doi.org/10.2118/179967-pa
[7]  王忠东, 王业博, 董红, 等. 页岩气水平井产量主控因素分析及产能预测[J]. 测井技术, 2017, 41(5): 577-582.
[8]  冯建辉, 牟泽辉. 涪陵焦石坝五峰组-龙马溪组页岩气富集主控因素分析[J]. 中国石油勘探, 2017, 22(3): 32-39.
[9]  Hu, M., Huang, W. and Li, J. (2018) Effects of Structural Characteristics on the Productivity of Shale Gas Wells: A Case Study on the Jiaoshiba Block in the Fuling Shale Gasfield, Sichuan Basin. Natural Gas Industry B, 5, 139-147.
https://doi.org/10.1016/j.ngib.2018.02.001
[10]  汤志, 镇国钧, 陈兴炳, 等. 昭通黄金坝YS108区块页岩气产能主控因素分析[J]. 新疆石油天然气, 2018, 14(3): 58-62.
[11]  吴则鑫. 苏里格气田致密气井产能主控因素分析[J]. 非常规油气, 2018, 5(5): 62-67.
[12]  马文礼, 李治平, 高闯, 等. 页岩气井初期产能主控因素“Pearson-MIC”分析方法[J]. 中国科技论文, 2018, 13(15): 1765-1771.
[13]  Kim, G., Lee, H., Chen, Z., Athichanagorn, S. and Shin, H. (2019) Effect of Reservoir Characteristics on the Productivity and Production Forecasting of the Montney Shale Gas in Canada. Journal of Petroleum Science and Engineering, 182, Article 106276.
https://doi.org/10.1016/j.petrol.2019.106276
[14]  Yi, J., Bao, H., Zheng, A., Zhang, B., Shu, Z., Li, J., et al. (2019) Main Factors Controlling Marine Shale Gas Enrichment and High-Yield Wells in South China: A Case Study of the Fuling Shale Gas Field. Marine and Petroleum Geology, 103, 114-125.
https://doi.org/10.1016/j.marpetgeo.2019.01.024

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133