|
高速磁浮铁路轨道不平顺谱构建方法研究
|
Abstract:
轨道不平顺是列车振动的主要激扰源,是引起列车车辆振动、车轨相互作用增大的主要因素之一,直接关系到列车运行的平稳性、舒适性和安全性,深入研究线路不平顺可为系统振动预测提供必要的基础数据,为线路轨道设计、建造与维护提供重要的理论依据。本文分析了高速磁浮轨道不平顺形式,以线路轨道特征长度为基准,提出一种基于随机过程叠加原理的高速磁浮线路不平顺拟合方法,所生成的垂向不平顺激励与实测数据吻合较好。采用8参数多项式拟合法得到高速磁浮轨道不平顺谱,通过与高速铁路经典谱对比,拟合的高速磁浮轨道不平顺谱在短波范围高于其他谱,在2~20 m波长范围在高速无砟谱和美国谱、德国谱之间,在长波范围内则低于高速无砟谱,特殊的是轨距不平顺在长波范围高于高速无砟谱,低于德国高干扰谱。
Track irregularity is the main source of train vibration and one of the main factors causing the increase of train-vehicle vibration and train-rail interaction, which is directly related to the smoothness, comfort and safety of train operation. In-depth study of track irregularity can provide the necessary basic data for system vibration prediction, and provide an important theoretical basis for the design, construction and maintenance of track. In this paper, the irregularity forms of high-speed maglev track are analyzed. Based on the characteristic length of track, a new irregularity fitting method based on the principle of superposition of random processes is proposed. The generated vertical irregularity excitation accords well with the measured data. The irregularity spectrum of the high-speed maglev track is obtained by using 8-parameter polynomial fitting method. Compared with the classical spectrum of high-speed railway, the irregularity spectrum of the high-speed maglev track is higher than other spectra in the short wave range, between the high-speed ballastless spectrum and the American spectrum and the German spectrum in the 2~20 m wavelength range, and lower than the high-speed ballastless spectrum in the long wave range. In particular, the gauge irregularity in the long wave range is higher than the high-speed ballastless spectrum, lower than the German high interference spectrum.
[1] | 张坤, 段晓峰, 韩峰, 等. 轨道随机不平顺对高速铁路列车运行性能影响分析[J]. 铁道标准设计, 2019, 63(4): 28-33. |
[2] | 雷晓燕, 仲志武. 高速铁路无砟轨道振动分析[J]. 铁道工程学报, 2009(1): 36-40. |
[3] | 高望翰, 郝晓莉, 张煜, 等. 基于多项式拟合的高速铁路高低轨道不平顺功率谱分析[J]. 北京交通大学学报, 2020, 44(2): 27-35. |
[4] | 柴冠华, 刘伟栋. 铁路轨道不平顺安全性分析[J]. 中国安全科学学报, 2019, 29(S2): 57-61. |
[5] | 杨友涛, 刘国祥, 刘成龙, 等. 高速铁路轨道不平顺参数多尺度相关性分析[J]. 吉林大学学报(工学版), 2019, 49(2): 416-425. |
[6] | 徐金辉. 高速车辆-轨道耦合系统随机振动分析及轨道不平顺评价方法研究[D]: [博士学位论文]. 成都: 西南交通大学, 2016. |
[7] | 李帅. 高速铁路轨道谱典型特征辨识及演化规律分析[D]: [博士学位论文]. 成都: 西南交通大学, 2018. |
[8] | 徐磊, 翟婉明. 铁路轨道不平顺的时-频能量联合分析方法[J]. 铁道学报, 2017, 39(4): 9-16. |
[9] | 国家铁路局. TB 10630-2019磁浮铁路技术标准(试行) [S]. 北京: 中国铁道出版社, 2019. |
[10] | 住房和城乡建设部. CJJ/T310-2021高速磁浮设计标准[S]. 北京: 中国建筑出版社, 2021. |
[11] | 国家铁路局. TB 3352-2014高速铁路无砟轨道不平顺谱[S]. 北京: 中国铁道出版社, 2014. |