全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于ISSA-BP的出血性脑卒中临床智能诊疗模型
Intelligent Diagnosis and Treatment Model of Hemorrhagic Stroke Based on ISSA-BP

DOI: 10.12677/mos.2025.143212, PP. 168-178

Keywords: 出血性脑卒中,ISSA-BP神经网络算法,FCM聚类
Hemorrhagic Stroke
, ISSA-BP Neural Network Algorithm, FCM Clustering

Full-Text   Cite this paper   Add to My Lib

Abstract:

出血性脑卒中是威胁人体健康的主要慢性非传染性疾病之一,而血肿周围的水肿作为脑出血后继发性损伤的标志。随着医学领域的不断进步和智能算法的发展,血肿扩张的准确诊断和治疗变得更加迫切。本文基于ISSA-BP神经网络算法预测所有患者发生血肿扩张的概率模型,建立FCM聚类的高斯拟合不同亚组的水肿体积随时间进展曲线,并求解水肿真实数据和拟合曲线之间的残差,最后利用方差分析模型得到不同治疗方法对水肿体积进展模式的影响,为临床提供了重要的参考。
Hemorrhagic stroke is one of the major chronic noncommunicable diseases that threaten human health, and edema around hematoma is a sign of secondary injury after cerebral hemorrhage. With the continuous advancement of the medical field and the development of intelligent algorithms, the accurate diagnosis and treatment of hematoma expansion has become more urgent. In this paper, based on the probability model of predicting hematoma expansion in all patients based on ISSA-BP neural network algorithm, the FCM clustering Gaussian fitting curve of edema volume progression over time for different subgroups was established, and the residual difference between the real data of edema and the fitting curve was solved. Finally, analysis of variance model was used to determine the effect of different treatment methods on the progression pattern of edema volume, which provided an important reference for clinical practice.

References

[1]  王任直, 常健博, 冯铭. 出血性卒中精准诊断、评估、预测及治疗展望[J]. 中国现代神经疾病杂志, 2019, 19(9): 618-621.
[2]  Bacchi, S., Oakden-Rayner, L., Menon, D. K., Jannes, J., Kleinig, T. and Koblar, S. (2020) Stroke Prognostication for Discharge Planning with Machine Learning: A Derivation Study. Journal of Clinical Neuroscience, 79, 100-103.
[3]  沈志慧, 杨廷琴, 吴江, 等. 出血性与缺血性脑卒中发病特征与危险因素的对比分析[J]. 中国医药指南, 2023, 21(23): 66-68.
[4]  王恒, 郭俊亮. 基于机器学习的出血性脑卒中临床智能诊疗预测模型的建立[J]. 黑龙江科学, 2024, 15(10): 129-132.
[5]  李倩, 刘芸宏, 吴晓慧, 等. 基于决策树和Logistic回归预测出血性脑卒中手术后医院感染风险[J]. 中华医院感染学杂志, 2021, 31(23): 3556-3561.
[6]  王海东, 张璐, 王洁, 等. C5.0决策树与RBF神经网络模型用于急性缺血性脑卒中出血性转化的风险预测性能比较[J]. 中华疾病控制杂志, 2019, 23(2): 228-233.
[7]  刘晨沁, 林高藏, 叶继伦, 等. 一种基于随机森林和BP神经网络的心室颤动识别方法[J]. 中国医疗器械杂志, 2023, 47(4): 396-401.
[8]  杜云, 周志奇, 贾科进, 等. 混合多项自适应权重的混沌麻雀搜索算法[J]. 计算机工程与应用, 2024, 60(7): 70-83.
[9]  王晓飞, 胡凡奎, 黄硕. 基于分布信息直觉模糊c均值聚类的红外图像分割算法[J]. 通信学报, 2020, 41(5): 120-129.
[10]  朱桂媛. 基于改进的模糊c-均值聚类脑MR图像分割研究[D]: [硕士学位论文]. 南京: 南京信息工程大学, 2024.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133