全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

含点蚀故障的行星齿轮系统刚度分析
Stiffness Analysis of Planetary Gear System with Pitting Fault

DOI: 10.12677/mos.2025.143211, PP. 156-167

Keywords: 行星齿轮,点蚀故障,势能法,时变啮合刚度
Planetary Gear
, Pitting Fault, Potential Energy Method, Time-Varying Mesh Stiffness

Full-Text   Cite this paper   Add to My Lib

Abstract:

行星齿轮传动机构是特种车辆自动变速器的核心部件,其在复杂多变的服役工况下,常常会发生各种故障。这些故障不仅影响车辆的正常运行,还可能导致严重的安全隐患。因此,明确故障机理对于齿轮传动系统的故障诊断具有极其重要的意义。本文以某特种车辆自动变速器为研究对象,选取第三排行星轮作为典型元件,建立了包含齿轮点蚀故障的啮合刚度模型。通过该模型,深入分析了不同程度的点蚀故障对时变啮合刚度的影响。研究结果表明,与健康齿轮的啮合刚度相比,含故障的齿轮在故障区域的啮合刚度出现了明显下降。此外,点蚀故障在齿根位置对刚度的影响更为显著。这一发现为齿轮故障的早期检测和诊断提供了重要的理论依据,也为特种车辆自动变速器的维护和可靠性提升提供了有力支持。
The planetary gear transmission mechanism is a core component of the automatic transmission in special-purpose vehicles. Under complex and variable working conditions, various faults often occur in this mechanism. These faults not only affect the normal operation of the vehicle but can also lead to serious safety hazards. Therefore, clarifying the failure mechanisms is of paramount importance for the fault diagnosis of gear transmission systems. In this study, the automatic transmission of a specific special-purpose vehicle was selected as the research object. The third row of planet gears was chosen as a typical element, and a meshing stiffness model incorporating gear pitting faults was established. Through this model, the impact of pitting faults of different degrees on the time-varying meshing stiffness was thoroughly analyzed. The research results show that compared with the meshing stiffness of healthy gears, the meshing stiffness of gears with faults exhibits a significant decrease in the fault region. Moreover, pitting faults at the root of the tooth have a more pronounced effect on stiffness. This finding provides important theoretical support for the early detection and diagnosis of gear faults and also offers strong backing for the maintenance and reliability improvement of automatic transmissions in special-purpose vehicles.

References

[1]  甄冬, 李东凯, 刘英辉. 含点蚀的行星齿轮系统动力学特性及损伤评估研究[J]. 噪声与振动控制, 2024, 44(2): 114-121.
[2]  庞修身. 齿轮点蚀故障机理研究与振动响应分析[D]: [硕士学位论文]. 秦皇岛: 燕山大学, 2023.
[3]  张浩亮. 齿轮点蚀故障的动态响应建模与实验研究[D]: [硕士学位论文]. 武汉: 武汉理工大学, 2019.
[4]  陈勇, 李金锴, 臧立彬. 疲劳点蚀斜齿轮动力学仿真预测与故障识别试验研究[J] 机械工程学报, 2021, 57(9): 61-70.
[5]  李嘉琳, 何巍华, 曲永志. PSO优化深度神经网络诊断齿轮早期点蚀故障[J] 东北大学学报(自然科学版), 2019, 40(7): 974-979.
[6]  王福林. 风电机组齿轮传动系统点蚀故障研究及振动响应分析[D]: [硕士学位论文]. 秦皇岛: 燕山大学, 2021.
[7]  田晓丽. 汽车变速器齿轮点蚀的仿真分析与改善研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2023.
[8]  赵国平, 董辉立, 王春明, 等. 斜齿轮疲劳裂纹萌生及扩展过程全寿命研究[J]. 摩擦学学报, 2016, 36(5): 643-649.
[9]  赵鑫, 张秀华, 溥江. 齿面点蚀对齿轮啮合刚度影响分析[J]. 机械强度, 2020, 42(6): 1424-1429.
[10]  李金锴, 陈勇, 臧立彬, 等. 基于有限元法的疲劳点蚀斜齿轮时变啮合刚度分析与试验研究[J]. 机械传动, 2021, 45(12): 1-7.
[11]  傅博伟, 杨杰, 刘英辉. 冲击工况下行星齿轮系统点蚀故障评估方法[J] 机械传动, 2024, 48(1): 82-88.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133