全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

河流潜流带控氮微生物特性及影响因素研究进展
Progress in Characteristics and Influencing Factors of Microorganisms Controlling Nitrogen Cycle in the Hyporheic Zone of a River

DOI: 10.12677/ag.2025.153029, PP. 281-292

Keywords: 潜流带,微生物,氮素,时空差异,影响因素
Hyporheic Zone
, Microorganism, Nitrogen, Spatiotemporal Difference, Influencing Factors

Full-Text   Cite this paper   Add to My Lib

Abstract:

作为河流生态系统的水陆过渡带,河流潜流带水体交换极其频繁,持续不断的溶质输移为其内部微生物群落提供了适宜的生存环境。数量庞大、种类繁多的微生物在此区域生存和繁衍,其介导的氮、磷、碳等物质循环对河流生态健康具有重要调控作用。本文系统归纳和总结了潜流带控氮微生物的组成与功能、识别与表征的方法,分析了潜流带控氮微生物时空差异,探讨了影响潜流带控氮微生物生长和活性的主要因素。针对现有研究存在的不足,今后需重点加强潜流带控氮微生物实时监测系统构建、微生物特性与潜流带土–水–环–生多因子的关系量化、潜流带微生物群落对介导氮素转化贡献定量评估等方面的研究。
As a transitional zone between water and land in river ecosystems, the water exchange in the hyporheic zone of a river is extremely frequent, and the continuous solute transport provides a suitable living environment for its internal microbial community. The large number and diverse types of microorganisms survive and reproduce in the zone, and the nitrogen, phosphorus, carbon and other material cycles mediated by them play an important regulatory role in the ecological health of a river. This article systematically summarizes the composition and function, identification and characterization methods of microorganisms controlling nitrogen cycle in the hyporheic zone of a river, analyzes their spatiotemporal differences, and discusses the main factors affecting their growth and activity. In response to the shortcomings of existing research, it is necessary to focus on strengthening research concerning the construction of a real-time monitoring system for microorganisms controlling nitrogen cycle in the hyporheic zone, the quantitative analysis of relationship between microbial characteristics and multiple factors related to soil, water, environment and biology in the hyporheic zone, and the quantitative evaluation of the contribution of microbial communities in the hyporheic zone to mediating nitrogen transformation in the future.

References

[1]  杜尧, 马腾, 邓娅敏, 等. 潜流带水文-生物地球化学: 原理、方法及其生态意义[J]. 地球科学, 2017, 42(5): 661-673.
[2]  Sun, R., Dong, J., Li, Y., Li, P., Liu, Y., Liu, Y., et al. (2022) The Influence Research on Nitrogen Transport and Reaction in the Hyporheic Zone with an In-Stream Structure. International Journal of Environmental Research and Public Health, 19, Article 12695.
https://doi.org/10.3390/ijerph191912695
[3]  Majeed, L.R., Majeed, L.F., Rashid, S., Bhat, S.A., Kumar, N. and Kumar, V. (2023) Intensification of Contaminants, Hydrology, and Pollution of Hyporheic Zone: The Liver of River Ecology—A Review. Environmental Sustainability, 7, 121-133.
https://doi.org/10.1007/s42398-023-00290-9
[4]  Li, Y., Wang, S., Zhang, W., Yuan, J. and Xu, C. (2017) Potential Drivers of the Level and Distribution of Nitrogen in the Hyporheic Zone of Lake Taihu, China. Water, 9, Article 544.
https://doi.org/10.3390/w9070544
[5]  Ward, A.S. (2015) The Evolution and State of Interdisciplinary Hyporheic Research. WIREs Water, 3, 83-103.
https://doi.org/10.1002/wat2.1120
[6]  苏小四, 师亚坤, 董维红, 等. 潜流带生物地球化学特征研究进展[J]. 地球科学与环境学报, 2019, 41(3): 337-351.
[7]  Ranalli, A.J. and Macalady, D.L. (2010) The Importance of the Riparian Zone and In-Stream Processes in Nitrate Attenuation in Undisturbed and Agricultural Watersheds—A Review of the Scientific Literature. Journal of Hydrology, 389, 406-415.
https://doi.org/10.1016/j.jhydrol.2010.05.045
[8]  Falkowski, P.G., Fenchel, T. and Delong, E.F. (2008) The Microbial Engines That Drive Earth’s Biogeochemical Cycles. Science, 320, 1034-1039.
https://doi.org/10.1126/science.1153213
[9]  蔡奕, 邢婧文, 阮西科, 等, 河流潜流带氮素迁移转化数值模拟研究进展[J]. 水资源保护, 2023, 39(1): 181-189.
[10]  李辉, 徐新阳, 李培军, 等, 人工湿地中氨化细菌去除有机氮的效果[J]. 环境工程学报, 2008(8): 1044-1047.
[11]  Könneke, M., Bernhard, A.E., de la Torre, J.R., Walker, C.B., Waterbury, J.B. and Stahl, D.A. (2005) Isolation of an Autotrophic Ammonia-Oxidizing Marine Archaeon. Nature, 437, 543-546.
https://doi.org/10.1038/nature03911
[12]  龚骏, 宋延静, 张晓黎. 海岸带沉积物中氮循环功能微生物多样性[J]. 生物多样性, 2013, 21(4): 434-445.
[13]  Ward, B.B., Devol, A.H., Rich, J.J., Chang, B.X., Bulow, S.E., Naik, H., et al. (2009) Denitrification as the Dominant Nitrogen Loss Process in the Arabian Sea. Nature, 461, 78-81.
https://doi.org/10.1038/nature08276
[14]  Rysgaard, S., Glud, R.N., Risgaard-Petersen, N. and Dalsgaard, T. (2004) Denitrification and Anammox Activity in Arctic Marine Sediments. Limnology and Oceanography, 49, 1493-1502.
https://doi.org/10.4319/lo.2004.49.5.1493
[15]  Kuypers, M.M.M., Marchant, H.K. and Kartal, B. (2018) The Microbial Nitrogen-Cycling Network. Nature Reviews Microbiology, 16, 263-276.
https://doi.org/10.1038/nrmicro.2018.9
[16]  沈仁芳, 赵学强. 土壤微生物在植物获得养分中的作用[J]. 生态学报, 2015, 35(20): 6584-6591.
[17]  Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., et al. (2021) Nitrogen Fixing Azotobacter Species as Potential Soil Biological Enhancers for Crop Nutrition and Yield Stability. Frontiers in Microbiology, 12, Article 628379.
https://doi.org/10.3389/fmicb.2021.628379
[18]  Vymazal, J. (2010) Constructed Wetlands for Wastewater Treatment. Water, 2, 530-549.
https://doi.org/10.3390/w2030530
[19]  包涛涛, 李丝雨, 王一, 等. 根系-菌根-土壤微生物对毛竹林土壤氮矿化过程的贡献[J]. 生态学杂, 2024, 43(5): 1234-1242.
[20]  Vymazal, J. (2007) Removal of Nutrients in Various Types of Constructed Wetlands. Science of the Total Environment, 380, 48-65.
https://doi.org/10.1016/j.scitotenv.2006.09.014
[21]  王嘉文, 吴刚, 徐云敏. 谷氨酰胺合成酶在植物氮同化及再利用中的研究进展[J]. 分子植物育种, 2019, 17(4): 1373-1377.
[22]  Wongkiew, S., Hu, Z., Chandran, K., Lee, J.W. and Khanal, S.K. (2017) Nitrogen Transformations in Aquaponic Systems: A Review. Aquacultural Engineering, 76, 9-19.
https://doi.org/10.1016/j.aquaeng.2017.01.004
[23]  潘红, 冯浩杰, 娄燕宏, 等. 农田土壤硝化微生物的生态学研究进展[J]. 土壤通报, 2023, 54(3): 750-756.
[24]  Verbaendert, I., De Vos, P., Boon, N. and Heylen, K. (2011) Denitrification in Gram-Positive Bacteria: An Underexplored Trait. Biochemical Society Transactions, 39, 254-258.
https://doi.org/10.1042/bst0390254
[25]  Zumft, W.G. (1997) Cell Biology and Molecular Basis of Denitrification. Microbiology and Molecular Biology Reviews, 61, 533-616.
https://doi.org/10.1128/.61.4.533-616.1997
[26]  Li, G., Yu, Y., Li, X., Jia, H., Ma, X. and Opoku, P.A. (2024) Research Progress of Anaerobic Ammonium Oxidation (Anammox) Process Based on Integrated Fixed-Film Activated Sludge (IFAS). Environmental Microbiology Reports, 16, e13235.
https://doi.org/10.1111/1758-2229.13235
[27]  Ludwig, W. (2007) Nucleic Acid Techniques in Bacterial Systematics and Identification. International Journal of Food Microbiology, 120, 225-236.
https://doi.org/10.1016/j.ijfoodmicro.2007.06.023
[28]  Ren, W., Wang, P., Yan, J., Liu, G., Zeng, B., Hussain, T., et al. (2017) Melatonin Alleviates Weanling Stress in Mice: Involvement of Intestinal Microbiota. Journal of Pineal Research, 64, e12448.
https://doi.org/10.1111/jpi.12448
[29]  Chao, A. and Bunge, J. (2002) Estimating the Number of Species in a Stochastic Abundance Model. Biometrics, 58, 531-539.
https://doi.org/10.1111/j.0006-341x.2002.00531.x
[30]  Jo, J., Oh, J. and Park, C. (2020) Microbial Community Analysis Using High-Throughput Sequencing Technology: A Beginner’s Guide for Microbiologists. Journal of Microbiology, 58, 176-192.
https://doi.org/10.1007/s12275-020-9525-5
[31]  Zengler, K., Toledo, G., Rappé, M., Elkins, J., Mathur, E.J., Short, J.M., et al. (2002) Cultivating the Uncultured. Proceedings of the National Academy of Sciences, 99, 15681-15686.
https://doi.org/10.1073/pnas.252630999
[32]  Wilson, K.H. and Blitchington, R.B. (1996) Human Colonic Biota Studied by Ribosomal DNA Sequence Analysis. Applied and Environmental Microbiology, 62, 2273-2278.
https://doi.org/10.1128/aem.62.7.2273-2278.1996
[33]  Pernthaler, A., Pernthaler, J. and Amann, R. (2002) Fluorescence in Situ Hybridization and Catalyzed Reporter Deposition for the Identification of Marine Bacteria. Applied and Environmental Microbiology, 68, 3094-3101.
https://doi.org/10.1128/aem.68.6.3094-3101.2002
[34]  Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N., et al. (2012) Ultra-High-Throughput Microbial Community Analysis on the Illumina HiSeq and MiSeq Platforms. The ISME Journal, 6, 1621-1624.
https://doi.org/10.1038/ismej.2012.8
[35]  Willis, A., Bunge, J. and Whitman, T. (2016) Improved Detection of Changes in Species Richness in High Diversity Microbial Communities. Journal of the Royal Statistical Society Series C: Applied Statistics, 66, 963-977.
https://doi.org/10.1111/rssc.12206
[36]  Davey, H.M. and Kell, D.B. (1996) Flow Cytometry and Cell Sorting of Heterogeneous Microbial Populations: The Importance of Single-Cell Analyses. Microbiological Reviews, 60, 641-696.
https://doi.org/10.1128/mr.60.4.641-696.1996
[37]  Nkongolo, K.K. and Narendrula-Kotha, R. (2020) Advances in Monitoring Soil Microbial Community Dynamic and Function. Journal of Applied Genetics, 61, 249-263.
https://doi.org/10.1007/s13353-020-00549-5
[38]  Nelson, W.C., Graham, E.B., Crump, A.R., Fansler, S.J., Arntzen, E.V., Kennedy, D.W., et al. (2020) Distinct Temporal Diversity Profiles for Nitrogen Cycling Genes in a Hyporheic Microbiome. PLOS ONE, 15, e0228165.
https://doi.org/10.1371/journal.pone.0228165
[39]  Ren, J., Hu, H., Lu, X. and Yu, R. (2023) Water and Heat Exchange Responses to Flooding and Local Storm Events in the Hyporheic Zone Driven by a Meandering Bend. Science of the Total Environment, 883, Article 163732.
https://doi.org/10.1016/j.scitotenv.2023.163732
[40]  Song, K., Lee, S., Mitsch, W.J. and Kang, H. (2010) Different Responses of Denitrification Rates and Denitrifying Bacterial Communities to Hydrologic Pulsing in Created Wetlands. Soil Biology and Biochemistry, 42, 1721-1727.
https://doi.org/10.1016/j.soilbio.2010.06.007
[41]  周念清, 乙东泽, 蔡奕, 等. 感潮河岸潜流带非饱和土水分运移实验模拟研究[J]. 勘察科学技术, 2024(3): 8-13.
[42]  Austin, B.J. and Strauss, E.A. (2010) Nitrification and Denitrification Response to Varying Periods of Desiccation and Inundation in a Western Kansas Stream. Hydrobiologia, 658, 183-195.
https://doi.org/10.1007/s10750-010-0462-x
[43]  Martínez-Espinosa, C., Sauvage, S., Al Bitar, A., Green, P.A., Vörösmarty, C.J. and Sánchez-Pérez, J.M. (2021) Denitrification in Wetlands: A Review towards a Quantification at Global Scale. Science of the Total Environment, 754, Article 142398.
https://doi.org/10.1016/j.scitotenv.2020.142398
[44]  Chen, J., Luo, M., Ma, R., Zhou, H., Zou, S. and Gan, Y. (2020) Nitrate Distribution under the Influence of Seasonal Hydrodynamic Changes and Human Activities in Huixian Karst Wetland, South China. Journal of Contaminant Hydrology, 234, Article 103700.
https://doi.org/10.1016/j.jconhyd.2020.103700
[45]  Haque, M.A., Jewel, M.A.S., Atique, U., Paul, A.K., Naher, N. and Iqbal, S. (2020) Seasonal and Spatial Variation of Flagellate Communities in a Tropical River. Limnologica, 85, Article 125824.
https://doi.org/10.1016/j.limno.2020.125824
[46]  Xu, T., Shen, Y., Ding, Z. and Zhu, B. (2023) Seasonal Dynamics of Microbial Communities in Rhizosphere and Bulk Soils of Two Temperate Forests. Rhizosphere, 25, Article 100673.
https://doi.org/10.1016/j.rhisph.2023.100673
[47]  Green, C.T., Puckett, L.J., Böhlke, J.K., Bekins, B.A., Phillips, S.P., Kauffman, L.J., et al. (2008) Limited Occurrence of Denitrification in Four Shallow Aquifers in Agricultural Areas of the United States. Journal of Environmental Quality, 37, 994-1009.
https://doi.org/10.2134/jeq2006.0419
[48]  Reddy, K.R. and D’Angelo, E.M. (1997) Biogeochemical Indicators to Evaluate Pollutant Removal Efficiency in Constructed Wetlands. Water Science and Technology, 35, 1-10.
https://doi.org/10.2166/wst.1997.0152
[49]  Wang, H., Chen, F., Zhang, C., Wang, M. and Kan, J. (2021) Estuarine Gradients Dictate Spatiotemporal Variations of Microbiome Networks in the Chesapeake Bay. Environmental Microbiome, 16, Article No. 22.
https://doi.org/10.1186/s40793-021-00392-z
[50]  Colby, G.A., Ruuskanen, M.O., St.Pierre, K.A., St.Louis, V.L., Poulain, A.J. and Aris-Brosou, S. (2020) Warming Climate Is Reducing the Diversity of Dominant Microbes in the Largest High Arctic Lake. Frontiers in Microbiology, 11, Article 561194.
https://doi.org/10.3389/fmicb.2020.561194
[51]  Rivett, M.O., Buss, S.R., Morgan, P., Smith, J.W.N. and Bemment, C.D. (2008) Nitrate Attenuation in Groundwater: A Review of Biogeochemical Controlling Processes. Water Research, 42, 4215-4232.
https://doi.org/10.1016/j.watres.2008.07.020
[52]  Fierer, N., Morse, J.L., Berthrong, S.T., Bernhardt, E.S. and Jackson, R.B. (2007) Environmental Controls on the Landscape-Scale Biogeography of Stream Bacterial Communities. Ecology, 88, 2162-2173.
https://doi.org/10.1890/06-1746.1
[53]  Tietz, A., Kirschner, A., Langergraber, G., Sleytr, K. and Haberl, R. (2007) Characterisation of Microbial Biocoenosis in Vertical Subsurface Flow Constructed Wetlands. Science of the Total Environment, 380, 163-172.
https://doi.org/10.1016/j.scitotenv.2006.11.034
[54]  Cai, Y., Xing, J., Huang, R., Ruan, X., Zhou, N. and Yi, D. (2022) Occurrence Characteristics of Inorganic Nitrogen in Groundwater in Silty-Clay Riparian Hyporheic Zones under Tidal Action: A Case Study of the Jingzi River in Shanghai, China. Applied Sciences, 12, Article 7704.
https://doi.org/10.3390/app12157704
[55]  Lin, Y., Jing, S., Lee, D. and Wang, T. (2002) Nutrient Removal from Aquaculture Wastewater Using a Constructed Wetlands System. Aquaculture, 209, 169-184.
https://doi.org/10.1016/s0044-8486(01)00801-8
[56]  李勇, 张维维, 袁佳慧, 等. 潜流带水流特性及氮素运移转化研究进展[J]. 河海大学学报(自然科学版), 2016, 44(1): 1-7.
[57]  Findlay, S. (1995) Importance of Surface-Subsurface Exchange in Stream Ecosystems: The Hyporheic Zone. Limnology and Oceanography, 40, 159-164.
https://doi.org/10.4319/lo.1995.40.1.0159
[58]  Bourke, S.A., Cook, P.G., Shanafield, M., Dogramaci, S. and Clark, J.F. (2014) Characterisation of Hyporheic Exchange in a Losing Stream Using Radon-222. Journal of Hydrology, 519, 94-105.
https://doi.org/10.1016/j.jhydrol.2014.06.057
[59]  Stuyfzand, P.J. (2010) Hydrogeochemical Processes during Riverbank Filtration and Artificial Recharge of Polluted Surface Waters: Zonation, Identification, and Quantification. In: NATO Science for Peace and Security Series C: Environmental Security, Springer, 97-128.
https://doi.org/10.1007/978-94-007-0026-0_7
[60]  Boulton, A.J., Datry, T., Kasahara, T., Mutz, M. and Stanford, J.A. (2010) Ecology and Management of the Hyporheic Zone: Stream-Groundwater Interactions of Running Waters and Their Floodplains. Journal of the North American Benthological Society, 29, 26-40.
https://doi.org/10.1899/08-017.1
[61]  Storey, R.G., Williams, D.D. and Fulthorpe, R.R. (2004) Nitrogen Processing in the Hyporheic Zone of a Pastoral Stream. Biogeochemistry, 69, 285-313.
https://doi.org/10.1023/b:biog.0000031049.95805.ec
[62]  Ward, A.S., Fitzgerald, M., Gooseff, M.N., Voltz, T.J., Binley, A.M. and Singha, K. (2012) Hydrologic and Geomorphic Controls on Hyporheic Exchange during Base Flow Recession in a Headwater Mountain Stream. Water Resources Research, 48, Article W04513.
https://doi.org/10.1029/2011wr011461
[63]  Riley, A.J. and Dodds, W.K. (2013) Whole-Stream Metabolism: Strategies for Measuring and Modeling Diel Trends of Dissolved Oxygen. Freshwater Science, 32, 56-69.
https://doi.org/10.1899/12-058.1
[64]  Flemming, H. and Wingender, J. (2010) The Biofilm Matrix. Nature Reviews Microbiology, 8, 623-633.
https://doi.org/10.1038/nrmicro2415
[65]  Schilling, K. and Zhang, Y. (2004) Baseflow Contribution to Nitrate-Nitrogen Export from a Large, Agricultural Watershed, USA. Journal of Hydrology, 295, 305-316.
https://doi.org/10.1016/j.jhydrol.2004.03.010
[66]  Shan, J., Yang, P., Shang, X., Rahman, M.M. and Yan, X. (2018) Anaerobic Ammonium Oxidation and Denitrification in a Paddy Soil as Affected by Temperature, pH, Organic Carbon, and Substrates. Biology and Fertility of Soils, 54, 341-348.
https://doi.org/10.1007/s00374-018-1263-z
[67]  李勇, 单雅洁, 李娜, 等. 太湖潜流带有机质含量对硝酸盐还原途径的影响[J]. 河海大学学报(自然科学版), 2022, 50(1): 44-51.
[68]  Pescimoro, E., Boano, F., Sawyer, A.H. and Soltanian, M.R. (2019) Modeling Influence of Sediment Heterogeneity on Nutrient Cycling in Streambeds. Water Resources Research, 55, 4082-4095.
https://doi.org/10.1029/2018wr024221
[69]  Liu, S. and Chui, T.F.M. (2019) Numerical Modelling to Evaluate the Nitrogen Removal Rate in Hyporheic Zone and Its Implications for Stream Management. Hydrological Processes, 33, 3084-3097.
https://doi.org/10.1002/hyp.13548
[70]  Andersen, T.K., Jensen, M.H. and Srensen, J. (1984) Diurnal Variation of Nitrogen Cycling in Coastal, Marine Sediments. Marine Biology, 83, 171-176.
https://doi.org/10.1007/bf00394725
[71]  Herrman, K.S., Bouchard, V. and Moore, R.H. (2007) Factors Affecting Denitrification in Agricultural Headwater Streams in Northeast Ohio, USA. Hydrobiologia, 598, 305-314.
https://doi.org/10.1007/s10750-007-9164-4
[72]  周念清, 李章平, 李丹, 等. 西洞庭湖湿地Eh与pH空间变异特征及影响因子分析[J]. 地球科学与环境学报, 2016, 38(1): 126-133.
[73]  周念清, 赵姗, 沈新平. 天然湿地演替带氮循环研究进展[J]. 科学通报, 2014, 59(18): 1688-1699.
[74]  Allison, S.D. and Martiny, J.B.H. (2008) Resistance, Resilience, and Redundancy in Microbial Communities. Proceedings of the National Academy of Sciences, 105, 11512-11519.
https://doi.org/10.1073/pnas.0801925105
[75]  Zhang, L., Guo, L., Cui, Z. and Ju, F. (2024) Exploiting Predatory Bacteria as Biocontrol Agents across Ecosystems. Trends in Microbiology, 32, 398-409.
https://doi.org/10.1016/j.tim.2023.10.005
[76]  Lai, T.F., Ford, R.M. and Huwiler, S.G. (2023) Advances in Cellular and Molecular Predatory Biology of Bdellovibrio Bacteriovorus Six Decades after Discovery. Frontiers in Microbiology, 14, Article 1168709.
https://doi.org/10.3389/fmicb.2023.1168709
[77]  Contreras-Moreno, F.J., Pérez, J., Muñoz-Dorado, J., Moraleda-Muñoz, A. and Marcos-Torres, F.J. (2024) Myxococcus Xanthus Predation: An Updated Overview. Frontiers in Microbiology, 15, Article 1339696.
https://doi.org/10.3389/fmicb.2024.1339696
[78]  Stief, P. (2013) Stimulation of Microbial Nitrogen Cycling in Aquatic Ecosystems by Benthic Macrofauna: Mechanisms and Environmental Implications. Biogeosciences, 10, 7829-7846.
https://doi.org/10.5194/bg-10-7829-2013
[79]  Gribsholt, B., Kostka, J. and Kristensen, E. (2003) Impact of Fiddler Crabs and Plant Roots on Sediment Biogeochemistry in a Georgia Saltmarsh. Marine Ecology Progress Series, 259, 237-251.
https://doi.org/10.3354/meps259237
[80]  Cao, D., Shi, F., Koike, T., Lu, Z. and Sun, J. (2014) Halophyte Plant Communities Affecting Enzyme Activity and Microbes in Saline Soils of the Yellow River Delta in China. CleanSoil, Air, Water, 42, 1433-1440.
https://doi.org/10.1002/clen.201300007
[81]  Karlowsky, S., Augusti, A., Ingrisch, J., Akanda, M.K.U., Bahn, M. and Gleixner, G. (2018) Drought-Induced Accumulation of Root Exudates Supports Post-Drought Recovery of Microbes in Mountain Grassland. Frontiers in Plant Science, 9, Article 1593.
https://doi.org/10.3389/fpls.2018.01593

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133