|
Material Sciences 2025
弯曲荷载作用下硫酸盐侵蚀对水泥基材料的力学性能影响
|
Abstract:
为考察弯曲荷载作用下硫酸盐侵蚀对水泥基材料性能的影响,本文设计了净浆、砂浆试件,研究硫酸盐侵蚀30 d、60 d、90 d、120 d、150 d后的抗折强度与抗压强度变化规律。研究发现:随着硫酸盐侵蚀时间的增加,水泥基材料抗折强度与抗压强度总体呈现先增大后减小的趋势,侵蚀150天时P、AM、BM、CM试件抗折强度损失系数分别为0.27、1、0.83、1.05,抗压强度损失系数分别为0.66、1.03、1、0.79。弯曲荷载加剧了硫酸盐侵蚀,40%的弯曲荷载加速效果比20%的更为显著,20%弯曲荷载加速效果又大于0%。
To investigate the influence of sulfate attack on the performance of cement-based materials under bending load, this paper designed paste and mortar specimens and studied the variation laws of flexural and compressive strengths after 30 d, 60 d, 90 d, 120 d and 150 d of sulfate attack. The research found that with the increase of sulfate attack time, the flexural and compressive strengths of cement-based materials generally showed a trend of first increasing and then decreasing. After 150 days of erosion, the flexural strength loss coefficients of P, AM, BM and CM specimens were 0.27, 1, 0.83 and 1.05 respectively, and the compressive strength loss coefficients were 0.66, 1.03, 1 and 0.79% respectively. Bending load aggravated the sulfate attack, and the acceleration effect of 40% bending load was more significant than that of 20%, and the acceleration effect of 20% bending load was greater than that of 0%.
[1] | 张成琳, 刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(1): 69-77. |
[2] | 丁倩, 黄耀英, 徐小枫, 等. 基于不同测试方法的密封养护水泥砂浆孔隙率和饱水度变化规律[J]. 硅酸盐通报, 2021, 40(11): 3584-3592, 3600. |
[3] | 王鹏刚, 莫芮, 隋晓萌, 等. 混凝土中氯盐-硫酸盐耦合侵蚀的化学-损伤-传输模型研究进展[J]. 硅酸盐学报, 2022, 50(2): 512-521. |
[4] | Zhou, M., Lu, W., Song, J. and Lee, G.C. (2018) Application of Ultra-High Performance Concrete in Bridge Engineering. Construction and Building Materials, 186, 1256-1267. https://doi.org/10.1016/j.conbuildmat.2018.08.036 |
[5] | Khan, M., Rehman, A. and Ali, M. (2020) Efficiency of Silica-Fume Content in Plain and Natural Fiber Reinforced Concrete for Concrete Road. Construction and Building Materials, 244, Article 118382. https://doi.org/10.1016/j.conbuildmat.2020.118382 |
[6] | 李宇航, 温勇, 韩国旗, 等. 荷载与锂渣掺量对混凝土氯离子扩散性与气体渗透性的影响[J]. 科学技术与工程, 2023, 23(13): 5693-5699. |
[7] | 席雅允, 刘娟红, 程立年. 铁尾矿粉混凝土在荷载与硫酸盐干湿循环耦合作用下的性能劣化机理[J]. 工程科学学报, 2024, 46(8): 1358-1369. |
[8] | 闫景晨, 马苗苗, 张威, 等. 盐冻融条件下环氧沥青混凝土多尺度疲劳开裂特性[J/OL]. 建筑材料学报: 1-10. http://kns.cnki.net/kcms/detail/31.1764.tu.20240605.1538.014.html, 2025-01-25. |
[9] | 张少辉, 王艳, 郭冰冰, 等. 温度场与硫酸盐侵蚀耦合作用混凝土孔结构分形特征演化规律[J]. 硅酸盐学报, 2024, 52(2): 474-484. |
[10] | 张云升, 黄冉, 杨永敢, 等. 杂散电流-盐卤耦合作用下钢筋混凝土腐蚀行为[J]. 建筑材料学报, 2017, 20(3): 449-455. |
[11] | 徐存东, 汪志航, 陈家豪, 等. 盐-冻侵蚀环境下聚丙烯纤维混凝土的寿命预测[J]. 硅酸盐通报, 2024, 43(6): 2111-2120, 2129. |
[12] | 张秉宗, 贡力, 杜强业, 等. 西北盐渍干寒地区聚丙烯纤维混凝土耐久性损伤试验研究[J]. 材料导报, 2022, 36(17): 108-114. |
[13] | 李江, 杨辉琴, 何向国, 等. 新疆复杂侵蚀环境下长距离输水管道阴极保护技术实践与展望[J]. 中国农村水利水电, 2023(2): 148-153, 159. |
[14] | 李雪峰. 低温环境下含石灰石粉水泥基材料抗硫酸盐侵蚀性能研究[J]. 硅酸盐通报, 2024, 43(7): 2372-2382. |
[15] | Wu, H., Miao, Y., Zhu, H., Zhao, C., Shu, Z. and Liu, C. (2022) Erosion Resistance Behavior of Recycled Plastic Concrete in Sodium Sulfate Solution. Construction and Building Materials, 324, Article 126630. https://doi.org/10.1016/j.conbuildmat.2022.126630 |
[16] | 甘磊, 冯先伟, 沈振中, 等. 硫酸盐溶液干湿循环作用下玄武岩纤维混凝土强度演化模型[J]. 东南大学学报(自然科学版), 2022, 52(4): 720-729. |
[17] | 鄂天龙, 张四江, 景明明, 等. 氧化石墨烯/微胶囊混凝土抗硫酸盐侵蚀性能研究[J]. 科学技术与工程, 2023, 23(36): 15580-15587. |
[18] | Zou, D., Qin, S., Liu, T. and Jivkov, A. (2021) Experimental and Numerical Study of the Effects of Solution Concentration and Temperature on Concrete under External Sulfate Attack. Cement and Concrete Research, 139, Article 106284. https://doi.org/10.1016/j.cemconres.2020.106284 |
[19] | 郭文华, 吴彪, 陈定市. 多因素耦合的混凝土结构硫酸盐传输多尺度模拟分析[J]. 中南大学学报(自然科学版), 2024, 55(4): 1374-1387. |
[20] | 高润东. 复杂环境下混凝土硫酸盐侵蚀微-宏观劣化规律研究[D]: [博士学位论文]. 北京: 清华大学, 2010. |
[21] | Shi, X., Feng, Y., Zhang, Y. and Su, Y. (2023) A Comprehensive Investigation on Sulphate Resistance of Geopolymer Recycled Concrete: Macro and Micro Properties. Construction and Building Materials, 403, Article 133052. https://doi.org/10.1016/j.conbuildmat.2023.133052 |