全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

树的反魔幻标号
Anti-Magic Labeling of Trees

DOI: 10.12677/pm.2025.153083, PP. 120-126

Keywords: 边标号,反魔幻标号,树
Edge Labeling
, Anti-Magic Labeling, Tree

Full-Text   Cite this paper   Add to My Lib

Abstract:

一个简单图 G=( V,E ) 的反魔幻标号是一个双射 f:E{ 1,2,,| E | } ,使得任意顶点所关联的边的标号之和互不相同。如果一个图存在魔幻标号,则称其为反魔幻图。Hartsfield和Ringel猜想除 K 2 以外的所有树图都是反魔幻的。令T是一个非 K 2 的树图, V 2 ( T ) T中所有顶点度为2的顶点集合。Liang,Wong和Zhu证明了若由 V 2 ( T ) 所得的诱导子图是一条路径P,且T中所有不属于 V 2 ( T ) 里的顶点的度均为奇数,则T是反魔幻图。令 v s 是路径P的中间点,且v是不属于T的一个新的顶点。设T'是通过连接 v s vT所构造的新树。本文证明了T'仍保持反魔幻性。
Let G=( V,E ) be a simple graph. A bijection f:E{ 1,2,,| E | } is called anti-magic if the sum of labels of the edges incident to any vertex is distinct. A graph is called anti-magic if there exists

References

[1]  Hartsfield, N. and Ringel, G. (1994) Pearls in Graph Theory. Academic Press.
[2]  Kaplan, G., Lev, A. and Roditty, Y. (2009) On Zero-Sum Partitions and Anti-Magic Trees. Discrete Mathematics, 309, 2010-2014.
https://doi.org/10.1016/j.disc.2008.04.012
[3]  Liang, Y.C., Wong, T.L. and Zhu, X. (2014) Anti-Magic Labeling of Trees. Discrete Mathematics, 331, 9-14.
https://doi.org/10.1016/j.disc.2014.04.021
[4]  Shang, J.L. (2015) Spiders Are Antimagic. Ars Combinatoria, 118, 367-372.
[5]  Lozano, A., Mora, M., Seara, C. and Tey, J. (2021) Caterpillars Are Antimagic. Mediterranean Journal of Mathematics, 18, 1-12.
https://doi.org/10.1007/s00009-020-01688-z
[6]  Sethuraman, G. and Shermily, K.M. (2021) Antimagic Labeling of New Classes of Trees. AKCE International Journal of Graphs and Combinatorics, 18, 110-116.
https://doi.org/10.1080/09728600.2021.1964334
[7]  Dhananjaya, E. and Li, W.T. (2022) Antimagic Labeling of Forests with Sets of Consecutive Integers. Discrete Applied Mathematics, 309, 75-84.
https://doi.org/10.1016/j.dam.2021.11.002
[8]  Sierra, J., Liu, D.D.F. and Toy, J. (2023) Antimagic Labelings of Forests. The PUMP Journal of Undergraduate Research, 6, 268-279.
https://doi.org/10.46787/pump.v6i0.3752

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133