|
Pure Mathematics 2025
树的反魔幻标号
|
Abstract:
一个简单图
的反魔幻标号是一个双射
,使得任意顶点所关联的边的标号之和互不相同。如果一个图存在魔幻标号,则称其为反魔幻图。Hartsfield和Ringel猜想除
以外的所有树图都是反魔幻的。令T是一个非
的树图,
是T中所有顶点度为2的顶点集合。Liang,Wong和Zhu证明了若由
所得的诱导子图是一条路径P,且T中所有不属于
里的顶点的度均为奇数,则T是反魔幻图。令
是路径P的中间点,且v是不属于T的一个新的顶点。设T'是通过连接
和v由T所构造的新树。本文证明了T'仍保持反魔幻性。
Let
be a simple graph. A bijection
is called anti-magic if the sum of labels of the edges incident to any vertex is distinct. A graph is called anti-magic if there exists
[1] | Hartsfield, N. and Ringel, G. (1994) Pearls in Graph Theory. Academic Press. |
[2] | Kaplan, G., Lev, A. and Roditty, Y. (2009) On Zero-Sum Partitions and Anti-Magic Trees. Discrete Mathematics, 309, 2010-2014. https://doi.org/10.1016/j.disc.2008.04.012 |
[3] | Liang, Y.C., Wong, T.L. and Zhu, X. (2014) Anti-Magic Labeling of Trees. Discrete Mathematics, 331, 9-14. https://doi.org/10.1016/j.disc.2014.04.021 |
[4] | Shang, J.L. (2015) Spiders Are Antimagic. Ars Combinatoria, 118, 367-372. |
[5] | Lozano, A., Mora, M., Seara, C. and Tey, J. (2021) Caterpillars Are Antimagic. Mediterranean Journal of Mathematics, 18, 1-12. https://doi.org/10.1007/s00009-020-01688-z |
[6] | Sethuraman, G. and Shermily, K.M. (2021) Antimagic Labeling of New Classes of Trees. AKCE International Journal of Graphs and Combinatorics, 18, 110-116. https://doi.org/10.1080/09728600.2021.1964334 |
[7] | Dhananjaya, E. and Li, W.T. (2022) Antimagic Labeling of Forests with Sets of Consecutive Integers. Discrete Applied Mathematics, 309, 75-84. https://doi.org/10.1016/j.dam.2021.11.002 |
[8] | Sierra, J., Liu, D.D.F. and Toy, J. (2023) Antimagic Labelings of Forests. The PUMP Journal of Undergraduate Research, 6, 268-279. https://doi.org/10.46787/pump.v6i0.3752 |