全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类变分波动方程经典解的爆破
Blow-Up of Classical Solution to a Class of Variational Wave Equations

DOI: 10.12677/pm.2025.153082, PP. 112-119

Keywords: 变分波动方程,爆破,特征线法,能量估计
Variational Wave Equation
, Blow-Up, Characteristic Method, Energy Estimate

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对一类一维非线性变分波动方程初值问题,应用特征线法和能量估计方法证明了即使初始能量任意小,经典解也会在有限时间内发生爆破。该模型源于受电场影响的向列相液晶体的研究。
We consider the initial value problem for a class of one-dimensional nonlinear variational wave equations. The method of characteristics and energy estimate is used to prove that the classical solutions will blow up in finite time even if the initial energy is arbitrarily small. This model is derived from the study of the nematic liquid crystals affected by electric fields.

References

[1]  孙新涛, 钱祥忠. 电场对向列相液晶指向矢取向的影响[J]. 淮南工业学院学报, 1999, 19(2): 71-74.
[2]  Hunter, J.K. and Zheng, Y. (1995) On a Nonlinear Hyperbolic Variational Equation: I. Global Existence of Weak Solutions. Archive for Rational Mechanics and Analysis, 129, 305-353.
https://doi.org/10.1007/bf00379259
[3]  Stewart, I.W. (2004) The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction. CRC Press, 26-28.
[4]  Alì, G. and Hunter, J.K. (2009) Orientation Waves in a Director Field with Rotational Inertia. Kinetic & Related Models, 2, 1-37.
https://doi.org/10.3934/krm.2009.2.1
[5]  Glassey, R.T., Hunter, J.K. and Zheng, Y. (1996) Singularities of a Variational Wave Equation. Journal of Differential Equations, 129, 49-78.
https://doi.org/10.1006/jdeq.1996.0111
[6]  Duan, W., Hu, Y. and Wang, G. (2020) Singularity and Existence for a Multidimensional Variational Wave Equation Arising from Nematic Liquid Crystals. Journal of Mathematical Analysis and Applications, 487, Article 124026.
https://doi.org/10.1016/j.jmaa.2020.124026
[7]  Zhang, P. and Zheng, Y. (2003) Weak Solutions to a Nonlinear Variational Wave Equation. Archive for Rational Mechanics and Analysis, 166, 303-319.
https://doi.org/10.1007/s00205-002-0232-7
[8]  Zhang, P. and Zheng, Y. (2005) Weak Solutions to a Nonlinear Variational Wave Equation with General Data. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 22, 207-226.
https://doi.org/10.1016/j.anihpc.2004.04.001
[9]  Bressan, A. and Huang, T. (2016) Representation of Dissipative Solutions to a Nonlinear Variational Wave Equation. Communications in Mathematical Sciences, 14, 31-53.
https://doi.org/10.4310/cms.2016.v14.n1.a2
[10]  Bressan, A. and Zheng, Y. (2006) Conservative Solutions to a Nonlinear Variational Wave Equation. Communications in Mathematical Physics, 266, 471-497.
https://doi.org/10.1007/s00220-006-0047-8
[11]  Bressan, A. (2016) Uniqueness of Conservative Solutions for Nonlinear Wave Equations via Characteristics. Bulletin of the Brazilian Mathematical Society, New Series, 47, 157-169.
https://doi.org/10.1007/s00574-016-0129-y
[12]  Bressan, A. and Chen, G. (2017) Lipschitz Metrics for a Class of Nonlinear Wave Equations. Archive for Rational Mechanics and Analysis, 226, 1303-1343.
https://doi.org/10.1007/s00205-017-1155-7
[13]  Song, K. (2003) On Singularity of a Nonlinear Variational Sine-Gordon Equation. Journal of Differential Equations, 189, 183-198.
https://doi.org/10.1016/s0022-0396(02)00150-x
[14]  Qin, F.M., Song, K. and Wang, Q. (2023) Singularity Formation for Nonlinear Variational Sine-Gordon Equation in a Multidimensional Space. Bulletin of the Korean Mathematical Society, 60, 1697-1704.
https://doi.org/10.4134/BKMS.b220859
[15]  Hu, Y. (2022) Singularity for a Nonlinear Degenerate Hyperbolic-Parabolic Coupled System Arising from Nematic Liquid Crystals. Advances in Nonlinear Analysis, 12, Article 20220268.
https://doi.org/10.1515/anona-2022-0268
[16]  Chen, G. and Zheng, Y. (2013) Singularity and Existence for a Wave System of Nematic Liquid Crystals. Journal of Mathematical Analysis and Applications, 398, 170-188.
https://doi.org/10.1016/j.jmaa.2012.08.048
[17]  Chen, G. and Sofiani, M. (2023) Singularity Formation for the General Poiseuille Flow of Nematic Liquid Crystals. Communications on Applied Mathematics and Computation, 5, 1130-1147.
https://doi.org/10.1007/s42967-022-00190-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133