|
Pure Mathematics 2025
基于量子Bernoulli噪声方法的超立方体上的磁量子游荡
|
Abstract:
本文介绍并研究了Bernoulli泛函框架下的离散时间磁量子游荡。根据作用于Bernoulli泛函的湮灭和增生算子引入了磁位移算子
,其中
和
分别是作用于Bernoulli泛函的磁增生和湮灭算子,然后在此基础上使用它们来定义新的磁量子游荡模型。
In this paper, we introduce and investigate a discrete-time magnetic quantum walk in the framework of Bernoulli functionals. We first introduce magnetic shift operators
in terms of the annihilation and creation operators acting on Bernoulli functionals, where
and
[1] | Aharonov, Y., Davidovich, L. and Zagury, N. (1993) Quantum random walks. Physical Review A, 48, 1687-1690. https://doi.org/10.1103/physreva.48.1687 |
[2] | Grover, L.K. (1997) Quantum Mechanics Helps in Searching for a Needle in a Haystack. Physical Review Letters, 79, 325-328. https://doi.org/10.1103/physrevlett.79.325 |
[3] | Chin, A.W., Datta, A., Caruso, F., Huelga, S.F. and Plenio, M.B. (2010) Noise-Assisted Energy Transfer in Quantum Networks and Light-Harvesting Complexes. New Journal of Physics, 12, Article ID: 065002. https://doi.org/10.1088/1367-2630/12/6/065002 |
[4] | Kempe, J. (2003) Quantum Random Walks: An Introductory Overview. Contemporary Physics, 44, 307-327. https://doi.org/10.1080/00107151031000110776 |
[5] | Konno, N. (2008) Quantum Walks. Lecture Notes in Mathematics, 1954, 309-452. |
[6] | Venegas-Andraca, S.E. (2012) Quantum Walks: A Comprehensive Review. Quantum Information Processing, 11, 1015-1106. https://doi.org/10.1007/s11128-012-0432-5 |
[7] | Wang, C. and Ye, X. (2016) Quantum Walk in Terms of Quantum Bernoulli Noises. Quantum Information Processing, 15, 1897-1908. https://doi.org/10.1007/s11128-016-1259-2 |
[8] | Wang, C. (2022) The Uniform Measure for Quantum Walk on Hypercube: A Quantum Bernoulli Noises Approach. Journal of Mathematical Physics, 63, Article ID: 113501. https://doi.org/10.1063/5.0070451 |
[9] | Wang, C. and Ye, X. (2016) Quantum Walk in Terms of Quantum Bernoulli Noises. Quantum Information Processing, 15, 1897-1908. https://doi.org/10.1007/s11128-016-1259-2 |
[10] | Wang, C., Wang, C., Ren, S. and Tang, Y. (2018) Open Quantum Random Walk in Terms of Quantum Bernoulli Noise. Quantum Information Processing, 17, Article No. 46. https://doi.org/10.1007/s11128-018-1820-2 |
[11] | Wang, C., Ren, S. and Tang, Y. (2020) A New Limit Theorem for Quantum Walk in Terms of Quantum Bernoulli Noises. Entropy, 22, Article 486. https://doi.org/10.3390/e22040486 |
[12] | Wang, C., Chai, H. and Lu, Y. (2010) Discrete-Time Quantum Bernoulli Noises. Journal of Mathematical Physics, 51, Article No. 46. https://doi.org/10.1063/1.3431028 |
[13] | Güneysu, B., Keller, M. and Schmidt, M. (2015) A Feynman-Kac-Itô Formula for Magnetic Schrödinger Operators on Graphs. Probability Theory and Related Fields, 165, 365-399. https://doi.org/10.1007/s00440-015-0633-9 |