|
Pure Mathematics 2025
高阶CLL方程的一相解研究
|
Abstract:
我们介绍了高阶CLL方程以及一相解,并且描述了高阶CLL方程的一相解。我们将高阶陈–李–刘方程的一相解将通过有限间隙积分法得出。
We introduce the higher-order CLL equations as well as one-phase solutions and describe the one-phase solutions of the higher-order CLL equations. The one-phase solution of the higher-order Chen-Lee-Liu equation will be derived by the finite-gap integration method.
[1] | Whitham, G.B. (1965) Non-Linear Dispersive Waves. Proceedings of the Royal Society A. Mathematical, Physical and Engineering Sciences, 283, 238-261. https://doi.org/10.1098/rspa.1965.0019 |
[2] | Flaschka, H., Forest, M.G. and Mclaughlin, D.W. (1980) Multiphase Averaging and the Inverse Spectral Solution of the Korteweg-Del Vries Equation. Communications on Pure Applied Mathematics, 33, 739-784. https://doi.org/10.1002/cpa.3160330605 |
[3] | Wang, D.S., Xu, L. and Xuan, Z.X. (2022) The Complete Classification of Solutions to the Riemann Problem of the Defocusing Complex Modified KdV Equation. Journal of Nonlinear Science, 32, Article Number 3. https://doi.org/10.1007/s00332-021-09766-6 |
[4] | Kong, L.Q., Wang, L., Wang, D.S., Dai, C.Q., Wen, X.Y. and Xu, L. (2019) Evolution of Initial Discontinuity for the Defocusing Complex Modified KdV Equation. Nonlinear Dynamics, 98, 691-702. https://doi.org/10.1007/s11071-019-05222-z |
[5] | Menikoff, R. and Plohr, B.J. (1989) The Riemann Problem for Fluid Flow of Real Materials. Reviews of Modern Physics, 61, 75-130. https://doi.org/10.1103/RevModPhys.61.75 |