全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Strategies to Enhance Polyhydroxyalkanoate Production from Sugarcane Molasses by Cupriavidus necator 11599

DOI: 10.4236/ojapps.2025.153037, PP. 573-596

Keywords: Molasse, Pretreatment, Fermentation, PHA, Cupriavidus necator

Full-Text   Cite this paper   Add to My Lib

Abstract:

The production of polyhydroxyalkanoate (PHA) is an opportunity to gradually replace some plastics produced from fossil resources. The use of agro-industrial waste to produce PHA is one of the most efficient techniques, because the cost of production is high. Molasse is waste from the sugar industry. It has already been transformed into PHA via fermentation. But Cupriavidus necator is unable to produce PHA from raw molasse. So, several authors have tried to overcome this problem by pretreating molasse before production. In this study, fermentation was conducted in a shake-flask with Cupriavidus necator. Three types of pretreatments of molasse were conducted to enhance PHA production: i) sulfuric acid pretreatment; ii) enzymatic pretreatment and iii) pretreatment with activated carbon. Molasse pretreated accumulates up to a maximum PHA content of 64.56, 75.64 and 58.14 wt.% respectively with (15:100) ratio for acid, (15:100) ratio for enzyme and (20:100) ratio for activated carbon. The obtained result showed an enhancement of PHA production from sugarcane molasses.

References

[1]  Pinto, R.M., Cunha, J.N.B., da Silva, J.R.T., de Araújo, R., de Oliveira Farias, E.A., da Silva Barud, H., Nunes, L.C.C. and Eiras, C. (2024) Self-Supported Films of Amburana Cearensis Bipolymer as an Alternative for Biodegradable Packaging. Waste and Biomass Valorization, 15, 2651‑2660.
https://doi.org/10.1007/s12649-023-02339-6

[2]  Provencher, J., Liboiron, M., Borrelle, S.B., Bond, A.L., et al. (2020) A Horizon Scan of Research Priorities to Inform Policies Aimed at Reducing the Harm of Plastic Pollution to Biota. Science of the Total Environment, 733, Article 139381.
https://doi.org/10.1016/j.scitotenv.2020.139381

[3]  Mattsson, K., Johnson, E.V., Malmendal, A., Linse, S., Hansson, L.-A. and Cedervall, T. (2017) Brain Damage and Behavioural Disorders in Fish Induced by Plastic Nanoparticles Delivered through the Food Chain. Scientific Reports, 7, Article No. 11452.
https://doi.org/10.1038/s41598-017-10813-0

[4]  Yu, L.-P., Yan, X., Zhang, X., Chen, X.-B., Wu, Q., Jiang, X.-R. and Chen, G.Q. (2020) Biosynthesis of Functional Polyhydroxyalkanoates by Engineered Halomonas bluephagenesis. Metabolic Engineering, 59, 119‑130.
https://doi.org/10.1016/j.ymben.2020.02.005

[5]  Akar, A., Akkaya, E.U., Yesiladali, S.K., et al. (2006) Accumulation of Polyhydroxyalkanoates by Microlunatus phosphovorus under Various Growth Conditions. Journal of Industrial Microbiology and Biotechnology, 33, 215‑220.
https://doi.org/10.1007/s10295-004-0201-2

[6]  Hazer, B. (2010) Amphiphilic Poly(3-hydroxy alkanoate)s: Potential Candidates for Medical Applications. International Journal of Polymer Science, 2010, Article 423460.
https://doi.org/10.1155/2010/423460
[7]  Vartiainen, J., Vähä-Nissi, M. and Harlin, A. (2014) Biopolymer Films and Coatings in Packaging Applications—A Review of Recent Developments. Materials Sciences and Applications, 5, 708-718.
https://doi.org/10.4236/msa.2014.510072

[8]  Arumugam, A., Anudakshaini, T., Shruthi, R., Jeyavishnu, K., Sundarra Harini, S. and Sharad, J. (2020) Low-Cost Production of PHA Using Cashew Apple (Anacardium occidentale L.) Juice as Potential Substrate: Optimization and Characterization. Biomass Conversion and Biorefinery, 10, 1167‑1178.
https://doi.org/10.1007/s13399-019-00502-5

[9]  Roland-Holst, D., Triolo, R., Heft-Neal, S. and Bayrami, B. (2013) Bioplastics in California.
https://bearecon.com/portfolio-data/bioplastics-california/bioplastics-california-report.pdf
[10]  Posada, J.A., Rincón, L.E. and Cardona, C.A. (2012) Design and Analysis of Biorefineries Based on Raw Glycerol: Addressing the Glycerol Problem. Bioresource Technology, 111, 282‑293.
https://doi.org/10.1016/j.biortech.2012.01.151

[11]  Khardenavis, A.A., Kumar, M.S., Mudliar, S.N. and Chakrabarti, T. (2007) Biotechnological Conversion of Agro-Industrial Wastewaters into Biodegradable Plastic, Poly β-Hydroxybutyrate. Bioresource Technology, 98, 3579‑3584.
https://doi.org/10.1016/j.biortech.2006.11.024

[12]  Raberg, M., Volodina, E., Lin, K. and Steinbüchel, A. (2018) Ralstonia eutropha H16 in Progress: Applications Beside PHAs and Establishment as Production Platform by Advanced Genetic Tools. Critical Reviews in Biotechnology, 38, 494‑510.
https://doi.org/10.1080/07388551.2017.1369933

[13]  Yan, S., et al. (2019) Procédé de production de polyhydroxyalcanoates (PHA) à partir de jus de pomme de cajou.
https://patents.google.com/patent/OA18637A/fr
[14]  Diribissakou, I., Bodjona, M.B., Yan, S., Mahy, J.G., et al. (2024) Cassava Peel Starch as a Raw Material for Polyhydroxyalkanoates Synthesis by Cupriavidus necator. Open Journal of Applied Sciences, 14, 3127-3144.
https://doi.org/10.4236/ojapps.2024.1411205

[15]  Javers, J. and Karunanithy, C. (2012) Polyhydroxyalkanoate Production by Pseudomonas putida KT217 on a Condensed Corn Solubles Based Medium Fed with Glycerol Water or Sunflower Soapstock. Advances in Microbiology, 2, 241-251.
https://doi.org/10.4236/aim.2012.23029

[16]  Sukan, A., Roy, I. and Keshavarz, T. (2014) Agro-Industrial Waste Materials as Substrates for the Production of Poly(3-Hydroxybutyric Acid). Journal of Biomaterials and Nanobiotechnology, 5, 229-240.
https://doi.org/10.4236/jbnb.2014.54027

[17]  Sen, K.Y., Hussin, M.H. and Baidurah, S. (2019) Biosynthesis of Poly(3-Hydroxybutyrate) (PHB) by Cupriavidus necator from Various Pretreated Molasses as Carbon Source. Biocatalysis and Agricultural Biotechnology, 17, 51‑59.
https://doi.org/10.1016/j.bcab.2018.11.006

[18]  Arikawa, H., Matsumoto, K. and Fujiki, T. (2017) Polyhydroxyalkanoate Production from Sucrose by Cupriavidus necator Strains Harboring Csc Genes from Escherichia coli W. Applied Microbiology and Biotechnology, 101, 7497‑7507.
https://doi.org/10.1007/s00253-017-8470-7

[19]  Kiselev, E.G., Demidenko, A.V., Zhila, N.O., Shishatskaya, E.I. and Volova, T.G. (2022) Sugar Beet Molasses as a Potential C-Substrate for PHA Production by Cupriavidus necator. Bioengineering, 9, Article 154.
https://doi.org/10.3390/bioengineering9040154

[20]  Dalsasso, R.R., Pavan, F.A., Bordignon, S.E., de Aragão, G.M.F. and Poletto, P. (2019) Polyhydroxybutyrate (PHB) Production by Cupriavidus necator from Sugarcane Vinasse and Molasses as Mixed Substrate. Process Biochemistry, 85, 12‑18.
https://doi.org/10.1016/j.procbio.2019.07.007

[21]  Farmani, B., Djordjević, M., Bodbodak, S., Alirezalu, K. and Ghanbarpour, A. (2022) Powdered Activated Carbon Treatment of Sugar Beet Molasses for Liquid Invert Sugar Production: Effects of Storage Time and Temperatures. Sugar Tech, 24, 522‑531.
https://doi.org/10.1007/s12355-021-01022-1
[22]  Cavalheiro, J.M., de Almeida, M.C.M., Grandfils, C. and Da Fonseca, M. (2009) Poly(3-Hydroxybutyrate) Production by Cupriavidus necator Using Waste Glycerol. Process Biochemistry, 44, 509‑515.
https://doi.org/10.1016/j.procbio.2009.01.008

[23]  Baei, M.S., Najafpour, G., Younesi, H., Tabandeh, F. and Eisazadeh, H. (2009) Poly(3-Hydroxybutyrate) Synthesis by Cupriavidus necator DSMZ 545 Utilizing Various Carbon Sources. World Applied Sciences Journal, 7, 157‑161.
[24]  APHA (1992) Standard Methods for Examination of Water and Wastewater. 18th Edition, American Public Health Association.
[25]  Comeau, Y., Hall, K.J. and Oldham, W.K. (1988) Determination of Poly-β-Hydroxybutyrate and Poly-β-Hydroxyvalerate in Activated Sludge by Gas-Liquid Chromatography. Applied and Environmental Microbiology, 54, 2325‑2327.
https://doi.org/10.1128/aem.54.9.2325-2327.1988

[26]  Miller, G.L. (1959) Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31, 426‑428.
https://doi.org/10.1021/ac60147a030

[27]  Ertan, F., Keskinler, B. and Tanriseven, A. (2021) Exploration of Cupriavidus necator ATCC 25207 for the Production of Poly(3-Hydroxybutyrate) Using Acid Treated Beet Molasses. Journal of Polymers and the Environment, 29, 2111‑2125.
https://doi.org/10.1007/s10924-020-02020-2

[28]  Ronďošová, S., Legerská, B., Chmelová, D., Ondrejovič, M. and Miertuš, S. (2022) Optimization of Growth Conditions to Enhance PHA Production by Cupriavidus necator. Fermentation, 8, Article 451.
https://doi.org/10.3390/fermentation8090451

[29]  Çaloğlu, B. and Binay, B. (2023) Utilization Potential of Agro-Industrial By-Products and Waste Sources: Laccase Production in Bioreactor with Pichia pastoris. Biochemical Engineering Journal, 193, Article 108854.
https://doi.org/10.1016/j.bej.2023.108854

[30]  Yoon, J., Cho, L.-H., Tun, W., Jeon, J.-S. and An, G. (2021) Sucrose Signaling in Higher Plants. Plant Science, 302, Article 110703.
https://doi.org/10.1016/j.plantsci.2020.110703

[31]  Khajavi, S.H., Kimura, Y., Oomori, T., Matsuno, R. and Adachi, S. (2005) Kinetics on Sucrose Decomposition in Subcritical Water. LWT-Food Science and Technology, 38, 297‑302.
https://doi.org/10.1016/j.lwt.2004.06.005

[32]  Usuki, C., Kimura, Y. and Adachi, S. (2007) Isomerization of Hexoses in Subcritical Water. Food Science and Technology Research, 13, 205‑209.
https://www.jstage.jst.go.jp/article/fstr/13/3/13_3_205/_article/-char/ja/

https://doi.org/10.3136/fstr.13.205

[33]  Lund, M.N. and Ray, C.A. (2017) Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms. Journal of Agricultural and Food Chemistry, 65, 4537‑4552.
https://doi.org/10.1021/acs.jafc.7b00882
[34]  Atiyeh, H.K. (2007) Fed-Batch Production of High Fructose Syrup and Ethanol from Sucrose by Saccharomyces Cerevisiae ATCC 36858. Présenté à Saudi Engineering Conference, Riyadh, 2-5 December 2007, V4/131, 169.
[35]  Sulieman, A.K., Putra, M.D., Abasaeed, A.E., Gaily, M.H., Al-Zahrani, S.M. and Zeinelabdeen, M.A. (2018) Kinetic Modeling of the Simultaneous Production of Ethanol and Fructose by Saccharomyces Cerevisiae. Electronic Journal of Biotechnology, 34, 1‑8.
https://doi.org/10.1016/j.ejbt.2018.04.006

[36]  Nomanbhay, S.M., Hussain, R. and Palanisamy, K. (2013) Microwave-Assisted Alkaline Pretreatment and Microwave Assisted Enzymatic Saccharification of Oil Palm Empty Fruit Bunch Fiber for Enhanced Fermentable Sugar Yield. Journal of Sustainable Bioenergy Systems, 3, 7-17.
https://doi.org/10.4236/jsbs.2013.31002

[37]  Jo, S.Y., Sohn, Y.J., Park, S.Y., et al. (2021) Biosynthesis of Polyhydroxyalkanoates from Sugarcane Molasses by Recombinant Ralstonia eutropha Strains. Korean Journal of Chemical Engineering, 38, 1452‑1459.
https://doi.org/10.1007/s11814-021-0783-7

[38]  Baruah, S., Najam Khan, M. and Dutta, J. (2016) Perspectives and Applications of Nanotechnology in Water Treatment. Environmental Chemistry Letters, 14, 1‑14.
https://doi.org/10.1007/s10311-015-0542-2

[39]  Solís-Fuentes, J.A., Galán-Méndez, F., Hernández-Medel, M.D.R., et al. (2019) Effectiveness of Bagasse Activated Carbon in Raw Cane Juice Clarification. Food Bioscience, 32, Article 100437.
https://doi.org/10.1016/j.fbio.2019.100437

[40]  Bernal, M., Ruiz, M.O., Geanta, R.M., Benito, J.M. and Escudero, I. (2016) Colour Removal from Beet Molasses by Ultrafiltration with Activated Charcoal. Chemical Engineering Journal, 283, 313‑322.
https://doi.org/10.1016/j.cej.2015.07.047

[41]  Lima, I.M., Clayton, C., Tir, A., et al. (2021) Design and Operation of a Scaled-Up Pilot Plant for the Removal of Sugar Beet Extract Colorants Using Powdered Activated Carbon. Sugar Tech, 23, 167‑177.
https://doi.org/10.1007/s12355-020-00812-3

[42]  Edye, L. (2001) An Overview of Sucrose Degradation. Présenté à International Society of Sugar Cane Technologists. Proceedings of the XXIV Congress, Brisbane, 17-21 September 2001, 353‑355.
[43]  Hu, X., Cao, Y.C., Wen, G.L., Zhang, X.Y., et al. (2017) Effect of Combined Use of Bacillus and Molasses on Microbial Communities in Shrimp Cultural Enclosure Systems. Aquaculture Research, 48, 2691‑2705.
https://doi.org/10.1111/are.13101

[44]  Hall, M.B. (2013) Efficacy of Reducing Sugar and Phenol-Sulfuric Acid Assays for Analysis of Soluble Carbohydrates in Feedstuffs. Animal Feed Science and Technology, 185, 94-100.
https://doi.org/10.1016/j.anifeedsci.2013.06.008

[45]  Atiyeh, H. and Duvnjak, Z. (2003) Production of Fructose and Ethanol from Cane Molasses Using Saccharomyces Cerevisiae ATCC 36858. Acta Biotechnologica, 23, 37‑48.
https://doi.org/10.1002/abio.200390005

[46]  Marques, W.L., Raghavendran, V., Stambuk, B.U. and Gombert, A.K. (2016) Sucrose and Saccharomyces Cerevisiae: A Relationship Most Sweet. FEMS Yeast Research, 16, fov107.
https://doi.org/10.1093/femsyr/fov107

[47]  Blair, E.M., Dickson, K.L. and O’Malley, M.A. (2021) Microbial Communities and Their Enzymes Facilitate Degradation of Recalcitrant Polymers in Anaerobic Digestion. Current Opinion in Microbiology, 64, 100‑108.
https://doi.org/10.1016/j.mib.2021.09.008

[48]  Jafari, N., Dehganpour, H., Ghavanini, N., Mollasalehi, H. and Minai-Tehrani, D. (2017) Interaction of Antipsychotic Drugs with Sucrase, Kinetics and Structural Study. Current Clinical Pharmacology, 12, 50‑54.
https://doi.org/10.2174/1574884712666170118145901

[49]  Carbonetto, B., Ramsayer, J., Nidelet, T., Legrand, J. and Sicard, D. (2018) Bakery Yeasts, a New Model for Studies in Ecology and Evolution. Yeast, 35, 591‑603.
https://doi.org/10.1002/yea.3350

[50]  Sirisatesuwon, C., Ninchan, B. and Sriroth, K. (2020) Effects of Inhibitors on Kinetic Properties of Invertase from Saccharomyces Cerevisiae. Sugar Tech, 22, 274‑283.
https://doi.org/10.1007/s12355-019-00757-2

[51]  Imfeld, G. and Vuilleumier, S. (2012) Measuring the Effects of Pesticides on Bacterial Communities in Soil: A Critical Review. European Journal of Soil Biology, 49, 22‑30.
https://doi.org/10.1016/j.ejsobi.2011.11.010

[52]  Shahid, M. and Khan, M.S. (2022) Ecotoxicological Implications of Residual Pesticides to Beneficial Soil Bacteria: A Review. Pesticide Biochemistry and Physiology, 188, Article 105272.
https://doi.org/10.1016/j.pestbp.2022.105272

[53]  Ayangbenro, A.S. and Babalola, O.O. (2017) A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. International Journal of Environmental Research and Public Health, 14, Article 94.
https://doi.org/10.3390/ijerph14010094

[54]  Priya, A., Gnanasekaran, L., Dutta, K., Rajendran, S., Balakrishnan, D. and Soto-Moscoso, M. (2022) Biosorption of Heavy Metals by Microorganisms: Evaluation of Different Underlying Mechanisms. Chemosphere, 307, Article 135957.
https://doi.org/10.1016/j.chemosphere.2022.135957

[55]  Sarawan, C., Suinyuy, T.N., Sewsynker-Sukai, Y. and Kana, E.B.G. (2019) Optimized Activated Charcoal Detoxification of Acid-Pretreated Lignocellulosic Substrate and Assessment for Bioethanol Production. Bioresource Technology, 286, Article 121403.
https://doi.org/10.1016/j.biortech.2019.121403

[56]  Zhang, Y., Xia, C.G., Lu, M.M. and Tu, M.B. (2018) Effect of Overliming and Activated Carbon Detoxification on Inhibitors Removal and Butanol Fermentation of Poplar Prehydrolysates. Biotechnology for Biofuels and Bioproducts, 11, Article No. 178.
https://doi.org/10.1186/s13068-018-1182-0

[57]  Sinha, P., Banerjee, S. and Kar, K.K. (2020) Characteristics of Activated Carbon. In: Kar, K.K., Ed., Handbook of Nanocomposite Supercapacitor Materials I, Springer, 125‑154.
https://doi.org/10.1007/978-3-030-43009-2_4

[58]  Perrich, J.R. (2018) Activated Carbon Adsorption for Wastewater Treatment. CRC Press.
https://doi.org/10.1201/9781351069465

[59]  Anjum, H., Johari, K., Gnanasundaram, N., et al. (2019) A Review on Adsorptive Removal of Oil Pollutants (BTEX) from Wastewater Using Carbon Nanotubes. Journal of Molecular Liquids, 277, 1005‑1025.
https://doi.org/10.1016/j.molliq.2018.10.105

[60]  Manchak, J. and Page, W.J. (1994) Control of Polyhydroxyalkanoate Synthesis in Azotobacter vinelandii Strain UWD. Microbiology, 140, 953‑963.
https://doi.org/10.1099/00221287-140-4-953

[61]  Ren, Q., de Roo, G., Ruth, K., Witholt, B., Zinn, M. and Thöny-Meyer, L. (2009) Simultaneous Accumulation and Degradation of Polyhydroxyalkanoates: Futile Cycle or Clever Regulation? Biomacromolecules, 10, 916‑922.
https://doi.org/10.1021/bm801431c

[62]  Mitra, R., Xu, T., Chen, G.-Q., Xiang, H. and Han, J. (2022) An Updated Overview on the Regulatory Circuits of Polyhydroxyalkanoates Synthesis. Microbial Biotechnology, 15, 1446‑1470.
https://doi.org/10.1111/1751-7915.13915

[63]  Bellini, S., Tommasi, T. and Fino, D. (2022) Poly(3-Hydroxybutyrate) Biosynthesis by Cupriavidus necator: A Review on Waste Substrates Utilization for a Circular Economy Approach. Bioresource Technology Reports, 17, Article 100985.
https://doi.org/10.1016/j.biteb.2022.100985

[64]  Marudkla, J., Lee, W.-C., Wannawilai, S., Chisti, Y. and Sirisansaneeyakul, S. (2018) Model of Acetic Acid-Affected Growth and Poly(3-Hydroxybutyrate) Production by Cupriavidus necator DSM 545. Journal of Biotechnology, 268, 12‑20.
https://doi.org/10.1016/j.jbiotec.2018.01.004

[65]  Brandl, H., Gross, R.A., Lenz, R.W. and Fuller, R.C. (1988) Pseudomonas oleovorans as a Source of Poly(β-Hydroxyalkanoates) for Potential Applications as Biodegradable Polyesters. Applied and Environmental Microbiology, 54, 1977‑1982.
https://doi.org/10.1128/aem.54.8.1977-1982.1988

[66]  Lageveen, R.G., Huisman, G.W., Preusting, H., Ketelaar, P., Eggink, G. and Witholt, B. (1988) Formation of Polyesters by Pseudomonas oleovorans: Effect of Substrates on Formation and Composition of Poly-(R)-3-Hydroxyalkanoates and Poly-(R)-3-Hydroxyalkenoates. Applied and Environmental Microbiology, 54, 2924‑2932.
https://doi.org/10.1128/aem.54.12.2924-2932.1988

[67]  Sohn, Y.J., Son, J., Jo, S.Y., et al. (2021) Chemoautotroph Cupriavidus necator as a Potential Game-Changer for Global Warming and Plastic Waste Problem: A Review. Bioresource Technology, 340, Article 125693.
https://doi.org/10.1016/j.biortech.2021.125693

[68]  Gal, M.L. (2021) Exploration de la biodiversité microbienne marine pour la production de polyhydroxyalcanoates et étude de leur potentiel pour l’élaboration de nouveaux biomatériaux visibles en Imagerie par Résonance Magnétique. Université de Bretagne occidentale.
[69]  Albuquerque, M., Torres, C. and Reis, M. (2010) Polyhydroxyalkanoate (PHA) Production by a Mixed Microbial Culture Using Sugar Molasses: Effect of the Influent Substrate Concentration on Culture Selection. Water Research, 44, 3419-3433.
https://doi.org/10.1016/j.watres.2010.03.021

[70]  Castilla-Marroquín, J.D., Pacheco, N., Herrera-Corredor, J.A., et al. (2024) Polyhydroxyalkanoates Production by Bacillus thuringiensis HA1 Using Sugarcane Molasses as Carbon Source. Producción de polihidroxialcanoatos por Bacillus thuringiensis HA1 usando coproductos de la industria azucarera como fuente de carbono. Revista Mexicana de Ingeniería Química, 23, Bio24352.
https://doi.org/10.24275/rmiq/Bio24352

[71]  Gomaa, E.Z. (2014) Production of Polyhydroxyalkanoates (PHAs) by Bacillus Subtilis and Escherichia coli Grown on Cane Molasses Fortified with Ethanol. Brazilian Archives of Biology and Technology, 57, 145‑154.
https://www.scielo.br/j/babt/a/cFPB5JX6ghRzmp7x6nskYGF/?lang=en

https://doi.org/10.1590/S1516-89132014000100020

[72]  Razzaq, S., Shahid, S., Farooq, R., Noreen, S., Perveen, S. and Bilal, M. (2024) Sustainable Bioconversion of Agricultural Waste Substrates into Poly(3-Hydroxyhexanoate) (mcl-PHA) by Cupriavidus necator DSM 428. Biomass Conversion and Biorefinery, 14, 9429‑9439.
https://doi.org/10.1007/s13399-022-03194-6

[73]  Oehmen, A., Pinto, F.V., Silva, V., Albuquerque, M.G.E. and Reis, M.A.M. (2014) The Impact of pH Control on the Volumetric Productivity of Mixed Culture PHA Production from Fermented Molasses. Engineering in Life Sciences, 14, 143‑152.
https://doi.org/10.1002/elsc.201200220

[74]  Saranya, V. and Shenbagarathai, R. (2011) Production and Characterization of PHA from Recombinant E. coli Harbouring Phac1 Gene of Indigenous Pseudomonas Sp. LDC-5 Using Molasses. Brazilian Journal of Microbiology, 42, 1109‑1118.
https://doi.org/10.1590/S1517-83822011000300032

[75]  Sawant, S.S., Tran, T.K., Salunke, B.K. and Kim, B.S. (2017) Potential of Saccharophagus degradans for Production of Polyhydroxyalkanoates Using Cellulose. Process Biochemistry, 57, 50‑56.
https://doi.org/10.1016/j.procbio.2017.03.016

[76]  Kourmentza, C. and Kornaros, M. (2016) Biotransformation of Volatile Fatty Acids to Polyhydroxyalkanoates by Employing Mixed Microbial Consortia: The Effect of pH and Carbon Source. Bioresource Technology, 222, 388‑398.
https://doi.org/10.1016/j.biortech.2016.10.014

[77]  Pais, J., Serafim, L.S., Freitas, F. and Reis, M.A.M. (2016) Conversion of Cheese Whey into Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) by Haloferax mediterranei. New Biotechnology, 33, 224‑230.
https://doi.org/10.1016/j.nbt.2015.06.001

[78]  Alsafadi, D. and Al-Mashaqbeh, O. (2017) A One-Stage Cultivation Process for the Production of Poly-3-(Hydroxybutyrate-co-Hydroxyvalerate) from Olive Mill Wastewater by Haloferax mediterranei. New Biotechnology, 34, 47‑53.
https://doi.org/10.1016/j.nbt.2016.05.003

[79]  Tan, G.-Y.A., Chen, C.-L., Ge, L., Li, L., Tan, S.N. and Wang, J.-Y. (2015) Bioconversion of Styrene to Poly(Hydroxyalkanoate) (PHA) by the New Bacterial Strain Pseudomonas putida NBUS1. Microbes and Environments, 30, 76‑85.
https://doi.org/10.1264/jsme2.ME14138

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133