The production of polyhydroxyalkanoate (PHA) is an opportunity to gradually replace some plastics produced from fossil resources. The use of agro-industrial waste to produce PHA is one of the most efficient techniques, because the cost of production is high. Molasse is waste from the sugar industry. It has already been transformed into PHA via fermentation. But Cupriavidusnecator is unable to produce PHA from raw molasse. So, several authors have tried to overcome this problem by pretreating molasse before production. In this study, fermentation was conducted in a shake-flask with Cupriavidusnecator. Three types of pretreatments of molasse were conducted to enhance PHA production: i) sulfuric acid pretreatment; ii) enzymatic pretreatment and iii) pretreatment with activated carbon. Molasse pretreated accumulates up to a maximum PHA content of 64.56, 75.64 and 58.14 wt.% respectively with (15:100) ratio for acid, (15:100) ratio for enzyme and (20:100) ratio for activated carbon. The obtained result showed an enhancement of PHA production from sugarcane molasses.
References
[1]
Pinto, R.M., Cunha, J.N.B., da Silva, J.R.T., de Araújo, R., de Oliveira Farias, E.A., da Silva Barud, H., Nunes, L.C.C. and Eiras, C. (2024) Self-Supported Films of Amburana Cearensis Bipolymer as an Alternative for Biodegradable Packaging. Waste and Biomass Valorization, 15, 2651‑2660. https://doi.org/10.1007/s12649-023-02339-6
[2]
Provencher, J., Liboiron, M., Borrelle, S.B., Bond, A.L., etal. (2020) A Horizon Scan of Research Priorities to Inform Policies Aimed at Reducing the Harm of Plastic Pollution to Biota. ScienceoftheTotalEnvironment, 733, Article 139381. https://doi.org/10.1016/j.scitotenv.2020.139381
[3]
Mattsson, K., Johnson, E.V., Malmendal, A., Linse, S., Hansson, L.-A. and Cedervall, T. (2017) Brain Damage and Behavioural Disorders in Fish Induced by Plastic Nanoparticles Delivered through the Food Chain. ScientificReports, 7, Article No. 11452. https://doi.org/10.1038/s41598-017-10813-0
[4]
Yu, L.-P., Yan, X., Zhang, X., Chen, X.-B., Wu, Q., Jiang, X.-R. and Chen, G.Q. (2020) Biosynthesis of Functional Polyhydroxyalkanoates by Engineered Halomonasbluephagenesis. MetabolicEngineering, 59, 119‑130. https://doi.org/10.1016/j.ymben.2020.02.005
[5]
Akar, A., Akkaya, E.U., Yesiladali, S.K., etal. (2006) Accumulation of Polyhydroxyalkanoates by Microlunatusphosphovorus under Various Growth Conditions. JournalofIndustrialMicrobiologyandBiotechnology, 33, 215‑220. https://doi.org/10.1007/s10295-004-0201-2
[6]
Hazer, B. (2010) Amphiphilic Poly(3-hydroxy alkanoate)s: Potential Candidates for Medical Applications. International Journal of Polymer Science, 2010, Article 423460. https://doi.org/10.1155/2010/423460
[7]
Vartiainen, J., Vähä-Nissi, M. and Harlin, A. (2014) Biopolymer Films and Coatings in Packaging Applications—A Review of Recent Developments. MaterialsSciencesandApplications, 5, 708-718. https://doi.org/10.4236/msa.2014.510072
[8]
Arumugam, A., Anudakshaini, T., Shruthi, R., Jeyavishnu, K., Sundarra Harini, S. and Sharad, J. (2020) Low-Cost Production of PHA Using Cashew Apple (Anacardium occidentale L.) Juice as Potential Substrate: Optimization and Characterization. BiomassConversionandBiorefinery, 10, 1167‑1178. https://doi.org/10.1007/s13399-019-00502-5
[9]
Roland-Holst, D., Triolo, R., Heft-Neal, S. and Bayrami, B. (2013) Bioplastics in California. https://bearecon.com/portfolio-data/bioplastics-california/bioplastics-california-report.pdf
[10]
Posada, J.A., Rincón, L.E. and Cardona, C.A. (2012) Design and Analysis of Biorefineries Based on Raw Glycerol: Addressing the Glycerol Problem. BioresourceTechnology, 111, 282‑293. https://doi.org/10.1016/j.biortech.2012.01.151
[11]
Khardenavis, A.A., Kumar, M.S., Mudliar, S.N. and Chakrabarti, T. (2007) Biotechnological Conversion of Agro-Industrial Wastewaters into Biodegradable Plastic, Poly β-Hydroxybutyrate. BioresourceTechnology, 98, 3579‑3584. https://doi.org/10.1016/j.biortech.2006.11.024
[12]
Raberg, M., Volodina, E., Lin, K. and Steinbüchel, A. (2018) Ralstoniaeutropha H16 in Progress: Applications Beside PHAs and Establishment as Production Platform by Advanced Genetic Tools. CriticalReviewsinBiotechnology, 38, 494‑510. https://doi.org/10.1080/07388551.2017.1369933
[13]
Yan, S., etal. (2019) Procédé de production de polyhydroxyalcanoates (PHA) à partir de jus de pomme de cajou. https://patents.google.com/patent/OA18637A/fr
[14]
Diribissakou, I., Bodjona, M.B., Yan, S., Mahy, J.G., etal. (2024) Cassava Peel Starch as a Raw Material for Polyhydroxyalkanoates Synthesis by Cupriavidusnecator. OpenJournalofAppliedSciences, 14, 3127-3144. https://doi.org/10.4236/ojapps.2024.1411205
[15]
Javers, J. and Karunanithy, C. (2012) Polyhydroxyalkanoate Production by Pseudomonas putida KT217 on a Condensed Corn Solubles Based Medium Fed with Glycerol Water or Sunflower Soapstock. AdvancesinMicrobiology, 2, 241-251. https://doi.org/10.4236/aim.2012.23029
[16]
Sukan, A., Roy, I. and Keshavarz, T. (2014) Agro-Industrial Waste Materials as Substrates for the Production of Poly(3-Hydroxybutyric Acid). JournalofBiomaterialsandNanobiotechnology, 5, 229-240. https://doi.org/10.4236/jbnb.2014.54027
[17]
Sen, K.Y., Hussin, M.H. and Baidurah, S. (2019) Biosynthesis of Poly(3-Hydroxybutyrate) (PHB) by Cupriavidusnecator from Various Pretreated Molasses as Carbon Source. BiocatalysisandAgriculturalBiotechnology, 17, 51‑59. https://doi.org/10.1016/j.bcab.2018.11.006
[18]
Arikawa, H., Matsumoto, K. and Fujiki, T. (2017) Polyhydroxyalkanoate Production from Sucrose by Cupriavidusnecator Strains Harboring Csc Genes from Escherichia coli W. AppliedMicrobiologyandBiotechnology, 101, 7497‑7507. https://doi.org/10.1007/s00253-017-8470-7
[19]
Kiselev, E.G., Demidenko, A.V., Zhila, N.O., Shishatskaya, E.I. and Volova, T.G. (2022) Sugar Beet Molasses as a Potential C-Substrate for PHA Production by Cupriavidusnecator. Bioengineering, 9, Article 154. https://doi.org/10.3390/bioengineering9040154
[20]
Dalsasso, R.R., Pavan, F.A., Bordignon, S.E., de Aragão, G.M.F. and Poletto, P. (2019) Polyhydroxybutyrate (PHB) Production by Cupriavidusnecator from Sugarcane Vinasse and Molasses as Mixed Substrate. ProcessBiochemistry, 85, 12‑18. https://doi.org/10.1016/j.procbio.2019.07.007
[21]
Farmani, B., Djordjević, M., Bodbodak, S., Alirezalu, K. and Ghanbarpour, A. (2022) Powdered Activated Carbon Treatment of Sugar Beet Molasses for Liquid Invert Sugar Production: Effects of Storage Time and Temperatures. SugarTech, 24, 522‑531. https://doi.org/10.1007/s12355-021-01022-1
[22]
Cavalheiro, J.M., de Almeida, M.C.M., Grandfils, C. and Da Fonseca, M. (2009) Poly(3-Hydroxybutyrate) Production by Cupriavidusnecator Using Waste Glycerol. ProcessBiochemistry, 44, 509‑515. https://doi.org/10.1016/j.procbio.2009.01.008
[23]
Baei, M.S., Najafpour, G., Younesi, H., Tabandeh, F. and Eisazadeh, H. (2009) Poly(3-Hydroxybutyrate) Synthesis by Cupriavidusnecator DSMZ 545 Utilizing Various Carbon Sources. World Applied Sciences Journal, 7, 157‑161.
[24]
APHA (1992) Standard Methods for Examination of Water and Wastewater. 18th Edition, American Public Health Association.
[25]
Comeau, Y., Hall, K.J. and Oldham, W.K. (1988) Determination of Poly-β-Hydroxybutyrate and Poly-β-Hydroxyvalerate in Activated Sludge by Gas-Liquid Chromatography. AppliedandEnvironmentalMicrobiology, 54, 2325‑2327. https://doi.org/10.1128/aem.54.9.2325-2327.1988
[26]
Miller, G.L. (1959) Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. AnalyticalChemistry, 31, 426‑428. https://doi.org/10.1021/ac60147a030
[27]
Ertan, F., Keskinler, B. and Tanriseven, A. (2021) Exploration of Cupriavidusnecator ATCC 25207 for the Production of Poly(3-Hydroxybutyrate) Using Acid Treated Beet Molasses. JournalofPolymersandtheEnvironment, 29, 2111‑2125. https://doi.org/10.1007/s10924-020-02020-2
[28]
Ronďošová, S., Legerská, B., Chmelová, D., Ondrejovič, M. and Miertuš, S. (2022) Optimization of Growth Conditions to Enhance PHA Production by Cupriavidusnecator. Fermentation, 8, Article 451. https://doi.org/10.3390/fermentation8090451
[29]
Çaloğlu, B. and Binay, B. (2023) Utilization Potential of Agro-Industrial By-Products and Waste Sources: Laccase Production in Bioreactor with Pichia pastoris. BiochemicalEngineeringJournal, 193, Article 108854. https://doi.org/10.1016/j.bej.2023.108854
[30]
Yoon, J., Cho, L.-H., Tun, W., Jeon, J.-S. and An, G. (2021) Sucrose Signaling in Higher Plants. PlantScience, 302, Article 110703. https://doi.org/10.1016/j.plantsci.2020.110703
[31]
Khajavi, S.H., Kimura, Y., Oomori, T., Matsuno, R. and Adachi, S. (2005) Kinetics on Sucrose Decomposition in Subcritical Water. LWT-FoodScienceandTechnology, 38, 297‑302. https://doi.org/10.1016/j.lwt.2004.06.005
[32]
Usuki, C., Kimura, Y. and Adachi, S. (2007) Isomerization of Hexoses in Subcritical Water. FoodScienceandTechnologyResearch, 13, 205‑209. https://www.jstage.jst.go.jp/article/fstr/13/3/13_3_205/_article/-char/ja/ https://doi.org/10.3136/fstr.13.205
[33]
Lund, M.N. and Ray, C.A. (2017) Control of Maillard Reactions in Foods: Strategies and Chemical Mechanisms. JournalofAgriculturalandFoodChemistry, 65, 4537‑4552. https://doi.org/10.1021/acs.jafc.7b00882
[34]
Atiyeh, H.K. (2007) Fed-Batch Production of High Fructose Syrup and Ethanol from Sucrose by Saccharomyces Cerevisiae ATCC 36858. Présenté à Saudi Engineering Conference, Riyadh, 2-5 December 2007, V4/131, 169.
[35]
Sulieman, A.K., Putra, M.D., Abasaeed, A.E., Gaily, M.H., Al-Zahrani, S.M. and Zeinelabdeen, M.A. (2018) Kinetic Modeling of the Simultaneous Production of Ethanol and Fructose by Saccharomyces Cerevisiae. ElectronicJournalofBiotechnology, 34, 1‑8. https://doi.org/10.1016/j.ejbt.2018.04.006
[36]
Nomanbhay, S.M., Hussain, R. and Palanisamy, K. (2013) Microwave-Assisted Alkaline Pretreatment and Microwave Assisted Enzymatic Saccharification of Oil Palm Empty Fruit Bunch Fiber for Enhanced Fermentable Sugar Yield. Journal of Sustainable Bioenergy Systems, 3, 7-17. https://doi.org/10.4236/jsbs.2013.31002
[37]
Jo, S.Y., Sohn, Y.J., Park, S.Y., etal. (2021) Biosynthesis of Polyhydroxyalkanoates from Sugarcane Molasses by Recombinant Ralstoniaeutropha Strains. KoreanJournalofChemicalEngineering, 38, 1452‑1459. https://doi.org/10.1007/s11814-021-0783-7
[38]
Baruah, S., Najam Khan, M. and Dutta, J. (2016) Perspectives and Applications of Nanotechnology in Water Treatment. EnvironmentalChemistryLetters, 14, 1‑14. https://doi.org/10.1007/s10311-015-0542-2
[39]
Solís-Fuentes, J.A., Galán-Méndez, F., Hernández-Medel, M.D.R., etal. (2019) Effectiveness of Bagasse Activated Carbon in Raw Cane Juice Clarification. FoodBioscience, 32, Article 100437. https://doi.org/10.1016/j.fbio.2019.100437
[40]
Bernal, M., Ruiz, M.O., Geanta, R.M., Benito, J.M. and Escudero, I. (2016) Colour Removal from Beet Molasses by Ultrafiltration with Activated Charcoal. ChemicalEngineeringJournal, 283, 313‑322. https://doi.org/10.1016/j.cej.2015.07.047
[41]
Lima, I.M., Clayton, C., Tir, A., etal. (2021) Design and Operation of a Scaled-Up Pilot Plant for the Removal of Sugar Beet Extract Colorants Using Powdered Activated Carbon. SugarTech, 23, 167‑177. https://doi.org/10.1007/s12355-020-00812-3
[42]
Edye, L. (2001) An Overview of Sucrose Degradation. Présenté à International Society of Sugar Cane Technologists. Proceedings of the XXIV Congress, Brisbane, 17-21 September 2001, 353‑355.
[43]
Hu, X., Cao, Y.C., Wen, G.L., Zhang, X.Y., etal. (2017) Effect of Combined Use of Bacillus and Molasses on Microbial Communities in Shrimp Cultural Enclosure Systems. AquacultureResearch, 48, 2691‑2705. https://doi.org/10.1111/are.13101
[44]
Hall, M.B. (2013) Efficacy of Reducing Sugar and Phenol-Sulfuric Acid Assays for Analysis of Soluble Carbohydrates in Feedstuffs. AnimalFeedScienceandTechnology, 185, 94-100. https://doi.org/10.1016/j.anifeedsci.2013.06.008
[45]
Atiyeh, H. and Duvnjak, Z. (2003) Production of Fructose and Ethanol from Cane Molasses Using Saccharomyces Cerevisiae ATCC 36858. ActaBiotechnologica, 23, 37‑48. https://doi.org/10.1002/abio.200390005
[46]
Marques, W.L., Raghavendran, V., Stambuk, B.U. and Gombert, A.K. (2016) Sucrose and Saccharomyces Cerevisiae: A Relationship Most Sweet. FEMSYeastResearch, 16, fov107. https://doi.org/10.1093/femsyr/fov107
[47]
Blair, E.M., Dickson, K.L. and O’Malley, M.A. (2021) Microbial Communities and Their Enzymes Facilitate Degradation of Recalcitrant Polymers in Anaerobic Digestion. CurrentOpinioninMicrobiology, 64, 100‑108. https://doi.org/10.1016/j.mib.2021.09.008
[48]
Jafari, N., Dehganpour, H., Ghavanini, N., Mollasalehi, H. and Minai-Tehrani, D. (2017) Interaction of Antipsychotic Drugs with Sucrase, Kinetics and Structural Study. CurrentClinicalPharmacology, 12, 50‑54. https://doi.org/10.2174/1574884712666170118145901
[49]
Carbonetto, B., Ramsayer, J., Nidelet, T., Legrand, J. and Sicard, D. (2018) Bakery Yeasts, a New Model for Studies in Ecology and Evolution. Yeast, 35, 591‑603. https://doi.org/10.1002/yea.3350
[50]
Sirisatesuwon, C., Ninchan, B. and Sriroth, K. (2020) Effects of Inhibitors on Kinetic Properties of Invertase from Saccharomyces Cerevisiae. SugarTech, 22, 274‑283. https://doi.org/10.1007/s12355-019-00757-2
[51]
Imfeld, G. and Vuilleumier, S. (2012) Measuring the Effects of Pesticides on Bacterial Communities in Soil: A Critical Review. EuropeanJournalofSoilBiology, 49, 22‑30. https://doi.org/10.1016/j.ejsobi.2011.11.010
[52]
Shahid, M. and Khan, M.S. (2022) Ecotoxicological Implications of Residual Pesticides to Beneficial Soil Bacteria: A Review. PesticideBiochemistryandPhysiology, 188, Article 105272. https://doi.org/10.1016/j.pestbp.2022.105272
[53]
Ayangbenro, A.S. and Babalola, O.O. (2017) A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. InternationalJournalofEnvironmentalResearchandPublicHealth, 14, Article 94. https://doi.org/10.3390/ijerph14010094
[54]
Priya, A., Gnanasekaran, L., Dutta, K., Rajendran, S., Balakrishnan, D. and Soto-Moscoso, M. (2022) Biosorption of Heavy Metals by Microorganisms: Evaluation of Different Underlying Mechanisms. Chemosphere, 307, Article 135957. https://doi.org/10.1016/j.chemosphere.2022.135957
[55]
Sarawan, C., Suinyuy, T.N., Sewsynker-Sukai, Y. and Kana, E.B.G. (2019) Optimized Activated Charcoal Detoxification of Acid-Pretreated Lignocellulosic Substrate and Assessment for Bioethanol Production. BioresourceTechnology, 286, Article 121403. https://doi.org/10.1016/j.biortech.2019.121403
[56]
Zhang, Y., Xia, C.G., Lu, M.M. and Tu, M.B. (2018) Effect of Overliming and Activated Carbon Detoxification on Inhibitors Removal and Butanol Fermentation of Poplar Prehydrolysates. Biotechnology for Biofuels and Bioproducts, 11, Article No. 178. https://doi.org/10.1186/s13068-018-1182-0
[57]
Sinha, P., Banerjee, S. and Kar, K.K. (2020) Characteristics of Activated Carbon. In: Kar, K.K., Ed., HandbookofNanocompositeSupercapacitorMaterialsI, Springer, 125‑154. https://doi.org/10.1007/978-3-030-43009-2_4
Anjum, H., Johari, K., Gnanasundaram, N., etal. (2019) A Review on Adsorptive Removal of Oil Pollutants (BTEX) from Wastewater Using Carbon Nanotubes. JournalofMolecularLiquids, 277, 1005‑1025. https://doi.org/10.1016/j.molliq.2018.10.105
[60]
Manchak, J. and Page, W.J. (1994) Control of Polyhydroxyalkanoate Synthesis in Azotobacter vinelandii Strain UWD. Microbiology, 140, 953‑963. https://doi.org/10.1099/00221287-140-4-953
[61]
Ren, Q., de Roo, G., Ruth, K., Witholt, B., Zinn, M. and Thöny-Meyer, L. (2009) Simultaneous Accumulation and Degradation of Polyhydroxyalkanoates: Futile Cycle or Clever Regulation? Biomacromolecules, 10, 916‑922. https://doi.org/10.1021/bm801431c
[62]
Mitra, R., Xu, T., Chen, G.-Q., Xiang, H. and Han, J. (2022) An Updated Overview on the Regulatory Circuits of Polyhydroxyalkanoates Synthesis. MicrobialBiotechnology, 15, 1446‑1470. https://doi.org/10.1111/1751-7915.13915
[63]
Bellini, S., Tommasi, T. and Fino, D. (2022) Poly(3-Hydroxybutyrate) Biosynthesis by Cupriavidusnecator: A Review on Waste Substrates Utilization for a Circular Economy Approach. BioresourceTechnologyReports, 17, Article 100985. https://doi.org/10.1016/j.biteb.2022.100985
[64]
Marudkla, J., Lee, W.-C., Wannawilai, S., Chisti, Y. and Sirisansaneeyakul, S. (2018) Model of Acetic Acid-Affected Growth and Poly(3-Hydroxybutyrate) Production by Cupriavidusnecator DSM 545. JournalofBiotechnology, 268, 12‑20. https://doi.org/10.1016/j.jbiotec.2018.01.004
[65]
Brandl, H., Gross, R.A., Lenz, R.W. and Fuller, R.C. (1988) Pseudomonas oleovorans as a Source of Poly(β-Hydroxyalkanoates) for Potential Applications as Biodegradable Polyesters. AppliedandEnvironmentalMicrobiology, 54, 1977‑1982. https://doi.org/10.1128/aem.54.8.1977-1982.1988
[66]
Lageveen, R.G., Huisman, G.W., Preusting, H., Ketelaar, P., Eggink, G. and Witholt, B. (1988) Formation of Polyesters by Pseudomonas oleovorans: Effect of Substrates on Formation and Composition of Poly-(R)-3-Hydroxyalkanoates and Poly-(R)-3-Hydroxyalkenoates. AppliedandEnvironmentalMicrobiology, 54, 2924‑2932. https://doi.org/10.1128/aem.54.12.2924-2932.1988
[67]
Sohn, Y.J., Son, J., Jo, S.Y., etal. (2021) Chemoautotroph Cupriavidusnecator as a Potential Game-Changer for Global Warming and Plastic Waste Problem: A Review. BioresourceTechnology, 340, Article 125693. https://doi.org/10.1016/j.biortech.2021.125693
[68]
Gal, M.L. (2021) Exploration de la biodiversité microbienne marine pour la production de polyhydroxyalcanoates et étude de leur potentiel pour l’élaboration de nouveaux biomatériaux visibles en Imagerie par Résonance Magnétique. Université de Bretagne occidentale.
[69]
Albuquerque, M., Torres, C. and Reis, M. (2010) Polyhydroxyalkanoate (PHA) Production by a Mixed Microbial Culture Using Sugar Molasses: Effect of the Influent Substrate Concentration on Culture Selection. WaterResearch, 44, 3419-3433. https://doi.org/10.1016/j.watres.2010.03.021
[70]
Castilla-Marroquín, J.D., Pacheco, N., Herrera-Corredor, J.A., etal. (2024) Polyhydroxyalkanoates Production by Bacillus thuringiensis HA1 Using Sugarcane Molasses as Carbon Source. Producción de polihidroxialcanoatos por Bacillus thuringiensis HA1 usando coproductos de la industria azucarera como fuente de carbono. Revista Mexicana de Ingeniería Química, 23, Bio24352. https://doi.org/10.24275/rmiq/Bio24352
[71]
Gomaa, E.Z. (2014) Production of Polyhydroxyalkanoates (PHAs) by Bacillus Subtilis and Escherichia coli Grown on Cane Molasses Fortified with Ethanol. BrazilianArchivesofBiologyandTechnology, 57, 145‑154. https://www.scielo.br/j/babt/a/cFPB5JX6ghRzmp7x6nskYGF/?lang=en https://doi.org/10.1590/S1516-89132014000100020
[72]
Razzaq, S., Shahid, S., Farooq, R., Noreen, S., Perveen, S. and Bilal, M. (2024) Sustainable Bioconversion of Agricultural Waste Substrates into Poly(3-Hydroxyhexanoate) (mcl-PHA) by Cupriavidusnecator DSM 428. Biomass Conversion and Biorefinery, 14, 9429‑9439. https://doi.org/10.1007/s13399-022-03194-6
[73]
Oehmen, A., Pinto, F.V., Silva, V., Albuquerque, M.G.E. and Reis, M.A.M. (2014) The Impact of pH Control on the Volumetric Productivity of Mixed Culture PHA Production from Fermented Molasses. EngineeringinLifeSciences, 14, 143‑152. https://doi.org/10.1002/elsc.201200220
[74]
Saranya, V. and Shenbagarathai, R. (2011) Production and Characterization of PHA from Recombinant E. coli Harbouring Phac1 Gene of Indigenous Pseudomonas Sp. LDC-5 Using Molasses. Brazilian Journal of Microbiology, 42, 1109‑1118. https://doi.org/10.1590/S1517-83822011000300032
[75]
Sawant, S.S., Tran, T.K., Salunke, B.K. and Kim, B.S. (2017) Potential of Saccharophagusdegradans for Production of Polyhydroxyalkanoates Using Cellulose. ProcessBiochemistry, 57, 50‑56. https://doi.org/10.1016/j.procbio.2017.03.016
[76]
Kourmentza, C. and Kornaros, M. (2016) Biotransformation of Volatile Fatty Acids to Polyhydroxyalkanoates by Employing Mixed Microbial Consortia: The Effect of pH and Carbon Source. BioresourceTechnology, 222, 388‑398. https://doi.org/10.1016/j.biortech.2016.10.014
[77]
Pais, J., Serafim, L.S., Freitas, F. and Reis, M.A.M. (2016) Conversion of Cheese Whey into Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) by Haloferaxmediterranei. NewBiotechnology, 33, 224‑230. https://doi.org/10.1016/j.nbt.2015.06.001
[78]
Alsafadi, D. and Al-Mashaqbeh, O. (2017) A One-Stage Cultivation Process for the Production of Poly-3-(Hydroxybutyrate-co-Hydroxyvalerate) from Olive Mill Wastewater by Haloferaxmediterranei. NewBiotechnology, 34, 47‑53. https://doi.org/10.1016/j.nbt.2016.05.003
[79]
Tan, G.-Y.A., Chen, C.-L., Ge, L., Li, L., Tan, S.N. and Wang, J.-Y. (2015) Bioconversion of Styrene to Poly(Hydroxyalkanoate) (PHA) by the New Bacterial Strain Pseudomonas putida NBUS1. MicrobesandEnvironments, 30, 76‑85. https://doi.org/10.1264/jsme2.ME14138