全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Organic Explosive Residues from Demining Sites in Amuru District, Northern Uganda

DOI: 10.4236/gep.2025.133005, PP. 87-105

Keywords: Organic Explosives, Eco-Toxicity, Detonation, Chromatography, Validation

Full-Text   Cite this paper   Add to My Lib

Abstract:

The study investigated the occurrence of explosive compounds at four demining sites in Amuru District, Northern Uganda. The concentrations of explosive compounds octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 2,4,6-Trinitrophenyl-n-methylnitramine (tetryl), 2,4,6-trinitrotoluene (TNT), 2,6-dinitrotoluene (2,6-DNT), cyclotrimethylenetrinitramine (RDX), nitroglycerin (NG) and Pentaerythritol tetranitrate (PETN) in soil samples collected from the demining sites were determined by liquid chromatography-tandem mass spectrometry with atmospheric pressure chemical ionization (LC-MSMS-APCI). The LC-MSMS-APCI method was optimized and validated. The validation parameters included were accuracy, precision, recovery, linearity, selectivity, limits of detection, and limits of quantification. The limit of detection and quantification of the target analytes ranged from 4.5 - 32.1 ng·mL1 and 17 - 102.9 ng·mL1, respectively. Recovery of the target analytes from the soil samples ranged from 76% - 96%. The intra- and inter-day accuracy and precision values of below 15% indicated that the target analytes could be determined with reasonable accuracy and precision using the optimized method. The target analyte concentrations in soil samples ranged from 24.6 to 551.8 μg·g1 with RDX and TNT being dominant. All the soil samples analyzed had explosive residue concentrations higher than the set chemical contamination values set by the US EPA PRGs Region 9 for Soil Screening Levels.

References

[1]  Ahmad, F., Schnitker, S. P., & Newell, C. J. (2007). Remediation of RDX-and HMX-Contaminated Groundwater Using Organic Mulch Permeable Reactive Barriers. Journal of Contaminant Hydrology, 90, 1-20.
https://doi.org/10.1016/j.jconhyd.2006.09.005
[2]  Bordeleau, G., Martel, R., Ampleman, G., & Thiboutot, S. (2008). Environmental Impacts of Training Activities at an Air Weapons Range. Journal of Environmental Quality, 37, 308-317.
https://doi.org/10.2134/jeq2007.0197
[3]  Broomandi, P., Guney, M., Kim, J. R., & Karaca, F. (2020). Soil Contamination in Areas Impacted by Military Activities: A Critical Review. Sustainability, 12, Article 9002.
https://doi.org/10.3390/su12219002
[4]  Chatterjee, S., Deb, U., Datta, S., Walther, C., & Gupta, D. K. (2017). Common Explosives (TNT, RDX, HMX) and Their Fate in the Environment: Emphasizing Bioremediation. Chemosphere, 184, 438-451.
https://doi.org/10.1016/j.chemosphere.2017.06.008
[5]  Clark, B., & Boopathy, R. (2007). Evaluation of Bioremediation Methods for the Treatment of Soil Contaminated with Explosives in Louisiana Army Ammunition Plant, Minden, Louisiana. Journal of Hazardous Materials, 143, 643-648.
https://doi.org/10.1016/j.jhazmat.2007.01.034
[6]  Clausen, J. L. (2011). Energetic Residue Observations for Operational Ranges. In ACS Symposium Series (pp. 107-136). American Chemical Society.
https://doi.org/10.1021/bk-2011-1069.ch006
[7]  Clausen, J., Robb, J., Curry, D., & Korte, N. (2004). A Case Study of Contaminants on Military Ranges: Camp Edwards, Massachusetts, USA. Environmental Pollution, 129, 13-21.
[8]  Desimoni, E., & Brunetti, B. (2015). About Estimating the Limit of Detection by the Signal-to-Noise Approach. Pharmaceutica Analytica Acta, 6, 1-4.
[9]  Evard, H., Kruve, A., & Leito, I. (2016). Tutorial on Estimating the Limit of Detection Using LC-MS Analysis, Part I: Theoretical Review. Analytica Chimica Acta, 942, 23-39.
https://doi.org/10.1016/j.aca.2016.08.043
[10]  Halasz, A., Groom, C., Zhou, E., Paquet, L., Beaulieu, C., Deschamps, S. et al. (2002). Detection of Explosives and Their Degradation Products in Soil Environments. Journal of Chromatography A, 963, 411-418.
https://doi.org/10.1016/s0021-9673(02)00553-8
[11]  Hewitt, A. D., Jenkins, T. F., Walsh, M. E., Walsh, M. R., & Taylor, S. (2005). RDX and TNT Residues from Live-Fire and Blow-In-Place Detonations. Chemosphere, 61, 888-894.
https://doi.org/10.1016/j.chemosphere.2005.04.058
[12]  Hewitt, A. D., Jenkins, T. F., Walsh, M. E., Walsh, M. R., Bigl, S. R., & Ramsey, C. A. (2007). Protocols for Collection of Surface Soil Samples at Military Training and Testing Ranges for the Characterization of Energetic Munitions Constituents.
[13]  Hoek, B. (2004). Military Explosives and Health: Organic Energetic Compound Syndrome? Medicine, Conflict and Survival, 20, 326-333.
https://doi.org/10.1080/1362369042000285955
[14]  Jenkins, T. F. (1998). Site Characterization for Explosives Contamination at a Military Firing Range Impact Area (Vol. 98, No. 9). US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory.
[15]  Jenkins, T. F., Hewitt, A. D., Grant, C. L., Thiboutot, S., Ampleman, G., Walsh, M. E. et al. (2006). Identity and Distribution of Residues of Energetic Compounds at Army Live-Fire Training Ranges. Chemosphere, 63, 1280-1290.
https://doi.org/10.1016/j.chemosphere.2005.09.066
[16]  Jenkins, T. F., Hewitt, A. D., Ranney, T. A., Ramsey, C. A., Lambert, D. J., Bjella, K. L., & Perron, N. M. (2004). Sampling Strategies Near a Low-Order Detonation and a Target at an Artillery Impact Area.
[17]  Jenkins, T. F., Pennington, J. C., Ranney, T. A., Berry, T. E., Miyares, P. H., Walsh, M. E., Wahlgren, E. G. et al. (2001). Characterization of Explosives Contamination at Military Firing Ranges, ERDC. CRREL Report TR-01-5. US Army Engineer Research & Development Center.
[18]  Kalsi, A., Celin, S. M., Bhanot, P., Sahai, S., & Sharma, J. G. (2021). A Novel Egg Shell-Based Bio Formulation for Remediation of RDX (Hexahydro-1, 3, 5-Trinitro-1, 3, 5-Triazine) Contaminated Soil. Journal of Hazardous Materials, 401, Article ID: 123346.
https://doi.org/10.1016/j.jhazmat.2020.123346
[19]  Khan, M. A., Sharma, A., Yadav, S., Celin, S. M., Sharma, S., Noureldeen, A. et al. (2021). Enhancing Remediation of RDX-Contaminated Soil by Introducing Microbial Formulation Technology Coupled with Biostimulation. Journal of Environmental Chemical Engineering, 9, Article ID: 106019.
https://doi.org/10.1016/j.jece.2021.106019
[20]  Lima, D. R. S., Bezerra, M. L. S., Neves, E. B., & Moreira, F. R. (2011). Impact of Ammunition and Military Explosives on Human Health and the Environment. Reviews on Environmental Health, 26, 101-110.
https://doi.org/10.1515/reveh.2011.014
[21]  Maser, E., Hartwig Bünning, T., & Strehse, J. S. (2024). Environmental and Human Toxicology Studies on Explosive Chemicals Leaking from Submerged Munitions. Propellants, Explosives, Pyrotechnics, 49, e202300181.
https://doi.org/10.1002/prep.202300181
[22]  McKone, T. E., & Daniels, J. I. (1991). Estimating Human Exposure through Multiple Pathways from Air, Water, and Soil. Regulatory Toxicology and Pharmacology, 13, 36-61.
https://doi.org/10.1016/0273-2300(91)90040-3
[23]  Nemeikaitė-Čėnienė, A., Miliukienė, V., Šarlauskas, J., Maldutis, E. K., & Čėnas, N. (2006). Chemical Aspects of Cytotoxicity of Nitroaromatic Explosives: A Review. Chemija, 17, 34-41.
[24]  Numbera, A. A. C. (2006). Method 8330B Nitroaromatics, Nitramines, and Nitrate Esters by High-Performance Liquid Chromatography (HPLC). US Environmental Protection Agency.
[25]  Orel, S., Durach, V., & Naumko, M. (2022). Environmental Problems, 7.
[26]  Ostrinskaya, A., Kunz, R. R., Clark, M., Kingsborough, R. P., Ong, T., & Deneault, S. (2019). Rapid Quantitative Analysis of Multiple Explosive Compound Classes on a Single Instrument via Flow‐injection Analysis Tandem Mass Spectrometry. Journal of Forensic Sciences, 64, 223-230.
https://doi.org/10.1111/1556-4029.13827
[27]  Pennington, J. C., & Brannon, J. M. (2002). Environmental Fate of Explosives. Thermochimica Acta, 384, 163-172.
https://doi.org/10.1016/s0040-6031(01)00801-2
[28]  Pennington, J. C., Jenkins, T. F., Thiboutot, S., Ampleman, G., Clausen, J. L., Hewitt, A. D., & Perron, N. M. (2005). Distribution and Fate of Energetics on DoD Test and Training Ranges: Interim Report 5.
[29]  Pennington, J. C., Jenkins, T. F., Ampleman, G., Thiboutot, S., Brannon, J. M., Hewitt, A. D., & Dontsova, K. (2006a). Distribution and Fate of Energetics on DoD Test and Training Ranges: Final Report. USA Engineer Research and Development Center, Technical Report, 06-13.
[30]  Pennington, J. C., Jenkins, T. F., Ampleman, G., Thiboutot, S., Hewitt, A. D., & Brochu, S. (2006b). Distribution and Fate of Energetic Materials on DoD Test and Training Ranges: Interim Report 6. US Army Engineer Research and Development Center.
[31]  Pichtel, J. (2012). Distribution and Fate of Military Explosives and Propellants in Soil: A Review. Applied and Environmental Soil Science, 2012, Article ID: 617236.
https://doi.org/10.1155/2012/617236
[32]  Sanderson, H., Fauser, P., Stauber, R. S., Christensen, J., Løfstrøm, P., & Becker, T. (2017). Civilian Exposure to Munitions-Specific Carcinogens and Resulting Cancer Risks for Civilians on the Puerto Rican Island of Vieques Following Military Exercises from 1947 to 1998. Global Security: Health, Science and Policy, 2, 40-61.
https://doi.org/10.1080/23779497.2017.1369358
[33]  Şener, H., Anilanmert, B., & Cengiz, S. (2017). A Fast Method for Monitoring of Organic Explosives in Soil: A Gas Temperature Gradient Approach in LC-APCI/MS/MS. Chemical Papers, 71, 971-979.
https://doi.org/10.1007/s11696-016-0042-2
[34]  Şener, H., Anilanmert, B., Mavis, M. E., Gursu, G. G., & Cengiz, S. (2021). LC-MS/MS Monitoring for Explosives Residues and OGSR with Diverse Ionization Temperatures in Soil & Hands: 30 Minutes for Extraction + Elution. Acta Chromatographica, 34, 304-314.
https://doi.org/10.1556/1326.2021.00930
[35]  Thiboutot, S., Ampleman, G., Marois, A., Gagnon, A., Bouchard, M., Hewitt, A., & Ranney, T. A. (2004). Environmental Conditions of Surface Soils, CFB Gagetown Training Area: Delineation of the Presence of Munitions-Related Residues (Phase III, Final Re-port) (p. 205). DRDC Valcartier TR.
[36]  Xu, X., Koeberg, M., Kuijpers, C., & Kok, E. (2014). Development and Validation of Highly Selective Screening and Confirmatory Methods for the Qualitative Forensic Analysis of Organic Explosive Compounds with High Performance Liquid Chromatography Coupled with (Photodiode Array and) LTQ Ion Trap/orbitrap Mass Spectrometric Detections (HPLC-(PDA)-LTQOrbitrap). Science & Justice, 54, 3-21.
https://doi.org/10.1016/j.scijus.2013.08.003
[37]  Zhang, H., Zhu, Y., Wang, S., Zhao, S., Nie, Y., Liao, X. et al. (2022). Contamination Characteristics of Energetic Compounds in Soils of Two Different Types of Military Demolition Range in China. Environmental Pollution, 295, Article ID: 118654.
https://doi.org/10.1016/j.envpol.2021.118654

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133