Measurements of indoor radon concentrations were performed using electret passive radon monitors (E-PERM) in 69 dwellings in the northern part of Jordan. The average indoor radon activity concentrations in dwellings varied from 4 Bq·m?3 to 961 Bq·m?3 with a mean value of 86 Bq·m?3. The annual effective dose for dwellings’ inhabitants due to radon inhalation ranged from 0.7 mSv to 2.1 mSv with a mean value of 2 mSv, higher than the world average value of 1.2 mSv. The overall annual mean effective dose rate from radon and its decay progenies was calculated to generate an excess lifetime fatal cancer risk of around 7 × 10?3. The effect of geological formations on indoor radon concentrations was assessed using the one-way analysis of variance method (ANOVA) which showed a significant correlation between indoor radon concentrations and the geological formations underneath the dwellings. The lowest mean value of indoor radon concentration by lithogy was 30 Bq·m?3 corresponding to dwellings built on a Quaternary sediments, whereas Cretaceous geological formations with limestone lithologies showed a much higher mean value of indoor radon concentration of 110 Bq·m?3. A radon potential map was produced. This map is a first step towards mapping indoor radon concentrations nationwide in Jordan.
References
[1]
Abumurad, K. M. (2024). Estimation of Radon Annual Effective Dose and Excess Lung Cancer Risk for the Residents of Kufrkhal, Jordan. DiscoverEnvironment,2, Article No. 110. https://doi.org/10.1007/s44274-024-00147-w
[2]
Alnawafleh, H., Tarawneh, K., & Alrawashdeh, R. (2013). Geologic and Economic Potentials of Minerals and Industrial Rocks in Jordan. NaturalScience,5, 756-769. https://doi.org/10.4236/ns.2013.56092
[3]
Alomari, A. H., Saleh, M. A., Hashim, S., & Alsayaheen, A. (2019a). Investigation of Natural Gamma Radiation Dose Rate (GDR) Levels and Its Relationship with Soil Type and Underlying Geological Formations in Jordan. Journal of African Earth Sciences, 155, 32-42. https://doi.org/10.1016/j.jafrearsci.2019.04.006
[4]
Alomari, A. H., Saleh, M. A., Hashim, S., Alsayaheen, A., & Abukashabeh, A. (2019b). Statistical Relationship between Activity Concentrations of Radionuclides 226Ra, 232Th, 40K, and 137Cs and Geological Formations in Surface Soil of Jordan. IsotopesinEnvironmentalandHealthStudies,55, 211-226. https://doi.org/10.1080/10256016.2019.1581776
[5]
Alonso, H., Rubiano, J. G., Guerra, J. G., Arnedo, M. A., Tejera, A., & Martel, P. (2019). Assessment of Radon Risk Areas in the Eastern Canary Islands Using Soil Radon Gas Concentration and Gas Permeability of Soils. ScienceofTheTotalEnvironment,664, 449-460. https://doi.org/10.1016/j.scitotenv.2019.01.411
[6]
Appleton, J. D. (2007). Radon: Sources, Health Risks, and Hazard Mapping. AMBIO:AJournaloftheHumanEnvironment,36, 85-89. https://doi.org/10.1579/0044-7447(2007)36[85:rshrah]2.0.co;2
[7]
Armstrong, M. (1998). Basic Linear Geostatistics. Verlag Berlin Heidelberg Springer Science & Business Media.
[8]
Arnedo, M. A., Rubiano, J. G., Alonso, H., Tejera, A., González, A., González, J. et al. (2017). Mapping Natural Radioactivity of Soils in the Eastern Canary Islands. JournalofEnvironmentalRadioactivity,166, 242-258. https://doi.org/10.1016/j.jenvrad.2016.07.010
[9]
Barnet, I., & Pacherová, P. (2013). Increased Soil Gas Radon and Indoor Radon Concentrations in Neoproterozoic Olistostromes of the Teplá-Barrandian Unit (Czech Republic). EnvironmentalEarthSciences,69, 1601-1607. https://doi.org/10.1007/s12665-012-1996-1
Bender, F. (1974). GeologyofJordan (N. R. Authority, Trans. Vol. 7). Natural Resources Authority and German Geological Mission in Jordan.
[12]
Borgoni, R., Tritto, V., Bigliotto, C., & De Bartolo, D. (2011). A Geostatistical Approach to Assess the Spatial Association between Indoor Radon Concentration, Geological Features and Building Characteristics: The Case of Lombardy, Northern Italy. InternationalJournalofEnvironmentalResearchandPublicHealth,8, 1420-1440. https://doi.org/10.3390/ijerph8051420
[13]
Bossew, P. (2015). Mapping the Geogenic Radon Potential and Estimation of Radon Prone Areas in Germany. RadiationEmergencyMedicine,4, 13-20.
[14]
Burdon, D. J., & Quennell, A. M. (1959). HandbookoftheGeologyofJordan. Government of the Hashemite Kingdom of Jordan.
[15]
Choubey, V. M., & Ramola, R. C. (1997). Correlation between Geology and Radon Levels in Groundwater, Soil and Indoor Air in Bhilangana Valley, Garhwal Himalaya, India. Environmental Geology, 32, 258-262. https://doi.org/10.1007/s002540050215
[16]
Ciotoli, G., Voltaggio, M., Tuccimei, P., Soligo, M., Pasculli, A., Beaubien, S. E. et al. (2017). Geographically Weighted Regression and Geostatistical Techniques to Construct the Geogenic Radon Potential Map of the Lazio Region: A Methodological Proposal for the European Atlas of Natural Radiation. JournalofEnvironmentalRadioactivity,166, 355-375. https://doi.org/10.1016/j.jenvrad.2016.05.010
[17]
Cosma, C., Cucoş-Dinu, A., Papp, B., Begy, R., & Sainz, C. (2013). Soil and Building Material as Main Sources of Indoor Radon in Băiţa-Ştei Radon Prone Area (Romania). JournalofEnvironmentalRadioactivity,116, 174-179. https://doi.org/10.1016/j.jenvrad.2012.09.006
[18]
Dragović, S., Janković, L., & Onjia, A. (2006). Assessment of Gamma Dose Rates from Terrestrial Exposure in Serbia and Montenegro. RadiationProtectionDosimetry,121, 297-302. https://doi.org/10.1093/rpd/ncl099
EURATOM (2013). COUNCIL DIRECTIVE 2013/59/EURATOM of 5 December 2013 Laying Down Basic Safety Standards for Protection againstthe Dangers Arising from ExposuretoIonising Radiation,and Repealing Directives89/618/Euratom,90/641/Euratom,96/29/Euratom,97/43/Euratomand2003/122/Euratom.
[21]
Fennel, S. G., Mackin, G. M., Madden, J. S., McGarry, A. T., Duffy, J. T., O’Colmain, M. et al. (2002). RadoninDwellings.TheIrishNationalRadonsurvey.RPH-02/1. Radiological Protection Institute of Ireland.
[22]
Florică, Ş., Burghele, B., Bican-Brişan, N., Begy, R., Codrea, V., Cucoş, A. et al. (2020). The Path from Geology to Indoor Radon. Environmental Geochemistry and Health, 42, 2655-2665. https://doi.org/10.1007/s10653-019-00496-z
[23]
Giustini, F., Ciotoli, G., Rinaldini, A., Ruggiero, L., & Voltaggio, M. (2019). Mapping the Geogenic Radon Potential and Radon Risk by Using Empirical Bayesian Kriging Regression: A Case Study from a Volcanic Area of Central Italy. ScienceofTheTotalEnvironment,661, 449-464. https://doi.org/10.1016/j.scitotenv.2019.01.146
[24]
Green, B. M. R., Miles, J. C. H., Bradley, E. J., & Rees, D. M. (2002). RadonAtlasofEnglandandWales. National Radiological protection Board, Didcot, UK, (NRBP-W26).
[25]
Gupta, S. (1994). StatisticalMethods. Chand.
[26]
Hámori, K., Tóth, E., Losonci, A., & Minda, M. (2006). Some Remarks on the Indoor Radon Distribution in a Country. AppliedRadiationandIsotopes,64, 859-863. https://doi.org/10.1016/j.apradiso.2006.02.098
[27]
Haneberg, W. C., Wiggins, A., Curl, D. C., Greb, S. F., Andrews, W. M., Rademacher, K. et al. (2020). A Geologically Based Indoor‐radon Potential Map of Kentucky. GeoHealth,4, e2020GH000263. https://doi.org/10.1029/2020gh000263
[28]
Hasan, M. M., Janik, M., Pervin, S., & Iimoto, T. (2023). Preliminary Population Exposure to Indoor Radon and Thoron in Dhaka City, Bangladesh. Atmosphere,14, Article 1067. https://doi.org/10.3390/atmos14071067
[29]
IAEA (2015). Protectionofthe Public against Exposure Indoors Due to Radon and Other Natural Sources of Radiation. International Atomic Energy Agency. https://www-pub.iaea.org/mtcd/publications/pdf/pub1651web-62473672.pdf
ICRP (2014). Radiological Protection against Radon Exposure. ICRP Publication 126.
[32]
ICRP (2017). AnnalsoftheICRP,ICRPPUBLICATION137OccupationalIntakesofRadionuclides. Annals of the ICRP, Part 3.
[33]
ICRU (2012). International Commission of Radiation Units Measurements Measurement and Reporting of Radon Exposures. ICRU Report 88. Journal of the ICRU, 12, 1-191.
[34]
Ielsch, G., Thiéblemont, D., Labed, V., Richon, P., Tymen, G., Ferry, C. et al. (2001). Radon (222Rn) Level Variations on a Regional Scale: Influence of the Basement Trace Element (U, Th) Geochemistry on Radon Exhalation Rates. JournalofEnvironmentalRadioactivity,53, 75-90. https://doi.org/10.1016/s0265-931x(00)00106-5
[35]
Ivanova, K., Stojanovska, Z., Kunovska, B., Chobanova, N., Badulin, V., & Benderev, A. (2019). Analysis of the Spatial Variation of Indoor Radon Concentrations (National Survey in Bulgaria). EnvironmentalScienceandPollutionResearch,26, 6971-6979. https://doi.org/10.1007/s11356-019-04163-9
[36]
Jordan Department of Statistics (2017). The Estimated Population ofthe Kingdom byAdministrative Divisions for2017. Hashmite Kingdom of Jordan. http://dosweb.dos.gov.jo/population/population-2/
[37]
Kemski, J., Klingel, R., & Siehl, A. (1996). Classification and Mapping of Radon-Affected Areas in Germany. EnvironmentInternational,22, 789-798. https://doi.org/10.1016/s0160-4120(96)00185-7
[38]
Kotrappa, P., Dempsey, J. C., Ramsey, R. W., & Stieff, L. R. (1990). A Practical E-PERMTM (Electret Passive Environmental Radon Monitor) System for Indoor 222Rn Measurement. HealthPhysics,58, 461-467. https://doi.org/10.1097/00004032-199004000-00008
[39]
Kovaltchouk, V. (2024). Analysis of Radon Progeny Contamination: Influences of Geological and Housing Characteristics. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2024.2369194
[40]
Levesque, B., Gauvin, D., McGregor, R. G., Martel, R., Gingras, S., Dontigny, A. et al. (1997). Radon in Residences. HealthPhysics,72, 907-914. https://doi.org/10.1097/00004032-199706000-00009
[41]
Minda, M., Tóth, G., Horváth, I., Barnet, I., Hámori, K., & Tóth, E. (2009). Indoor Radon Mapping and Its Relation to Geology in Hungary. EnvironmentalGeology,57, 601-609. https://doi.org/10.1007/s00254-008-1329-6
[42]
Neznal, M., Neznal, M., Matolin, M., Barnet, I., & Miksova, J. (2004). The New Method for Assessing the Radon Risk of Building Sites. Czech Geological Survey.
Nuhu, H., Hashim, S., Aziz Saleh, M., Syazwan Mohd Sanusi, M., Hussein Alomari, A., Jamal, M. H. et al. (2021). Soil Gas Radon and Soil Permeability Assessment: Mapping Radon Risk Areas in Perak State, Malaysia. PLOSONE,16, e0254099. https://doi.org/10.1371/journal.pone.0254099
[45]
Othman, I., & Yassine, T. (1995). Natural Radioactivity in the Syrian Environment. ScienceofTheTotalEnvironment,170, 119-124. https://doi.org/10.1016/0048-9697(95)04610-d
[46]
Othman, I., Hushari, M., Raja, G., & Alsawaf, A. (1996). Radon in Syrian Houses. JournalofRadiologicalProtection,16, 45-50. https://doi.org/10.1088/0952-4746/16/1/006
[47]
Özbay, T., & Karadeniz, Ö. (2016). Indoor Radon Measurement in Izmir Province, Turkey. InternationalJournalofEnvironmentalAnalyticalChemistry,96, 752-762. https://doi.org/10.1080/03067319.2016.1196684
[48]
Pervin, S., Yeasmin, S., Khandaker, M. U., & Begum, A. (2022). Radon Concentrations in Indoor and Outdoor Environments of Atomic Energy Centre Dhaka, Bangladesh, and Concomitant Health Hazards. FrontiersinNuclearEngineering,1, Article 901818. https://doi.org/10.3389/fnuen.2022.901818
[49]
Popit, A., & Vaupotič, J. (2002). Indoor Radon Concentrations in Relation to Geology in Slovenia. EnvironmentalGeology,42, 330-337. https://doi.org/10.1007/s00254-002-0526-y
[50]
Pugliese, M., Quarto, M., Loffredo, F., Mazzella, A., & Roca, V. (2013). Indoor Radon Concentrations in Dwellings of Ischia Island. JournalofEnvironmentalProtection,4, 37-39. https://doi.org/10.4236/jep.2013.48a2005
[51]
Ravikumar, P., & Somashekar, R. K. (2013). Estimates of the Dose of Radon and Its Progeny Inhaled Inside Buildings. European Journal of Environmental Sciences,3, 88-95. https://doi.org/10.14712/23361964.2015.10
[52]
Saleh, M. A., Ramli, A. T., Alajerami, Y., & Aliyu, A. S. (2013). Assessment of Environmental 226Ra, 232Th and 40K Concentrations in the Region of Elevated Radiation Background in Segamat District, Johor, Malaysia. JournalofEnvironmentalRadioactivity,124, 130-140. https://doi.org/10.1016/j.jenvrad.2013.04.013
[53]
Sarrou, I., & Pashalidis, I. (2003). Radon Levels in Cyprus. JournalofEnvironmentalRadioactivity,68, 269-277. https://doi.org/10.1016/s0265-931x(03)00066-3
[54]
Sundal, A., Henriksen, H., Soldal, O., & Strand, T. (2004). The Influence of Geological Factors on Indoor Radon Concentrations in Norway. ScienceofTheTotalEnvironment,328, 41-53. https://doi.org/10.1016/j.scitotenv.2004.02.011
[55]
Szabó, K. Z., Jordan, G., Horváth, Á., & Szabó, C. (2013). Dynamics of Soil Gas Radon Concentration in a Highly Permeable Soil Based on a Long-Term High Temporal Resolution Observation Series. JournalofEnvironmentalRadioactivity,124, 74-83. https://doi.org/10.1016/j.jenvrad.2013.04.004
[56]
Tung, S., Leung, J. K. C., Jiao, J. J., Wiegand, J., & Wartenberg, W. (2013). Assessment of Soil Radon Potential in Hong Kong, China, Using a 10-Point Evaluation System. EnvironmentalEarthSciences,68, 679-689. https://doi.org/10.1007/s12665-012-1782-0
[57]
Tzortzis, M., Svoukis, E., & Tsertos, H. (2004). A Comprehensive Study of Natural Gamma Radioactivity Levels and Associated Dose Rates from Surface Soils in Cyprus. RadiationProtectionDosimetry,109, 217-224. https://doi.org/10.1093/rpd/nch300
[58]
UNSCEAR (1988). ReportoftheUnitedNationsScientificCommitteeonthe Effects of Atomic Radiation. United Nations.
[59]
UNSCEAR (1993). Sourcesand Effects of Ionizing Radiation.
[60]
UNSCEAR (2000a). Sourcesand Effects of Ionizing Radiation, Report tothe General Assembly with Scientific Annexes (Vol.1). United Nations Publications.
[61]
UNSCEAR (2000b). Sourcesand Effects of Ionizing Radiation: Sources (Vol.1). United Nations Publications.
[62]
USEPA (2019). ProtocolfortheMeasurementofRadoninHomesandWorkplaces. United States Environmental Protection Agency.
[63]
Valentin, J. (2007). The2007 Recommendations ofthe International Commission on Radiological Protection (Vol.37). Elsevier.
[64]
Van Dung, N., Thuan, D. D., Nhan, D. D., Carvalho, F. P., Van Thang, D., & Quang, N. H. (2022). Radiation Exposure in a Region with Natural High Background Radiation Originated from Rare Earth Element Deposits at Bat Xat District, Vietnam. RadiationandEnvironmentalBiophysics,61, 309-324. https://doi.org/10.1007/s00411-022-00971-9
[65]
Weltner, A., Mäkeläinen, I., & Arvela, H. (2002). Radon Mapping Strategy in Finland. InternationalCongressSeries,1225, 63-69. https://doi.org/10.1016/s0531-5131(01)00551-9
[66]
White, S. B., Bergsten, J. W., Alexander, B. V., Rodman, N. F., & Phillips, J. L. (1992). Indoor 222Rn Concentrations in a Probability Sample of 43,000 Houses across 30 States. HealthPhysics,62, 41-50. https://doi.org/10.1097/00004032-199201000-00005
[67]
WHO (2009). WHO Handbook on Indoor Radon: A Public Health Perspective. World Health Organization.
[68]
WHO (2010). WHO Guidelines for Indoor Air Quality: Selected Pollutants. World Health Organization. Regional Office for Europe.
[69]
Zhu, H.-C., Charlet, J. M., & Tondeur, F. (1998). Geological Controls to the Indoor Radon Distribution in Southern Belgium. ScienceofTheTotalEnvironment,220, 195-214. https://doi.org/10.1016/s0048-9697(98)00259-9
[70]
Zlobina, A., Farkhutdinov, I., Carvalho, F. P., Wang, N., Korotchenko, T., Baranovskaya, N. et al. (2022). Impact of Environmental Radiation on the Incidence of Cancer and Birth Defects in Regions with High Natural Radioactivity. InternationalJournalofEnvironmentalResearchandPublicHealth,19, 8643. https://doi.org/10.3390/ijerph19148643