全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Radiological Risk Assessment for Exposure to Indoor Radon in North of Jordan

DOI: 10.4236/gep.2025.133003, PP. 47-67

Keywords: Indoor Radon, Geology, Radon Mapping, Lifetime Cancer Risk, E-PERM

Full-Text   Cite this paper   Add to My Lib

Abstract:

Measurements of indoor radon concentrations were performed using electret passive radon monitors (E-PERM) in 69 dwellings in the northern part of Jordan. The average indoor radon activity concentrations in dwellings varied from 4 Bq·m3 to 961 Bq·m3 with a mean value of 86 Bq·m3. The annual effective dose for dwellings’ inhabitants due to radon inhalation ranged from 0.7 mSv to 2.1 mSv with a mean value of 2 mSv, higher than the world average value of 1.2 mSv. The overall annual mean effective dose rate from radon and its decay progenies was calculated to generate an excess lifetime fatal cancer risk of around 7 × 103. The effect of geological formations on indoor radon concentrations was assessed using the one-way analysis of variance method (ANOVA) which showed a significant correlation between indoor radon concentrations and the geological formations underneath the dwellings. The lowest mean value of indoor radon concentration by lithogy was 30 Bq·m3 corresponding to dwellings built on a Quaternary sediments, whereas Cretaceous geological formations with limestone lithologies showed a much higher mean value of indoor radon concentration of 110 Bq·m3. A radon potential map was produced. This map is a first step towards mapping indoor radon concentrations nationwide in Jordan.

References

[1]  Abumurad, K. M. (2024). Estimation of Radon Annual Effective Dose and Excess Lung Cancer Risk for the Residents of Kufrkhal, Jordan. Discover Environment, 2, Article No. 110.
https://doi.org/10.1007/s44274-024-00147-w
[2]  Alnawafleh, H., Tarawneh, K., & Alrawashdeh, R. (2013). Geologic and Economic Potentials of Minerals and Industrial Rocks in Jordan. Natural Science, 5, 756-769.
https://doi.org/10.4236/ns.2013.56092
[3]  Alomari, A. H., Saleh, M. A., Hashim, S., & Alsayaheen, A. (2019a). Investigation of Natural Gamma Radiation Dose Rate (GDR) Levels and Its Relationship with Soil Type and Underlying Geological Formations in Jordan. Journal of African Earth Sciences, 155, 32-42.
https://doi.org/10.1016/j.jafrearsci.2019.04.006
[4]  Alomari, A. H., Saleh, M. A., Hashim, S., Alsayaheen, A., & Abukashabeh, A. (2019b). Statistical Relationship between Activity Concentrations of Radionuclides 226Ra, 232Th, 40K, and 137Cs and Geological Formations in Surface Soil of Jordan. Isotopes in Environmental and Health Studies, 55, 211-226.
https://doi.org/10.1080/10256016.2019.1581776
[5]  Alonso, H., Rubiano, J. G., Guerra, J. G., Arnedo, M. A., Tejera, A., & Martel, P. (2019). Assessment of Radon Risk Areas in the Eastern Canary Islands Using Soil Radon Gas Concentration and Gas Permeability of Soils. Science of The Total Environment, 664, 449-460.
https://doi.org/10.1016/j.scitotenv.2019.01.411
[6]  Appleton, J. D. (2007). Radon: Sources, Health Risks, and Hazard Mapping. AMBIO: A Journal of the Human Environment, 36, 85-89.
https://doi.org/10.1579/0044-7447(2007)36[85:rshrah]2.0.co;2
[7]  Armstrong, M. (1998). Basic Linear Geostatistics. Verlag Berlin Heidelberg Springer Science & Business Media.
[8]  Arnedo, M. A., Rubiano, J. G., Alonso, H., Tejera, A., González, A., González, J. et al. (2017). Mapping Natural Radioactivity of Soils in the Eastern Canary Islands. Journal of Environmental Radioactivity, 166, 242-258.
https://doi.org/10.1016/j.jenvrad.2016.07.010
[9]  Barnet, I., & Pacherová, P. (2013). Increased Soil Gas Radon and Indoor Radon Concentrations in Neoproterozoic Olistostromes of the Teplá-Barrandian Unit (Czech Republic). Environmental Earth Sciences, 69, 1601-1607.
https://doi.org/10.1007/s12665-012-1996-1
[10]  Bem, H., Domanski, T., Bakir, Y., & Al-Zenki, S. (1996). Radon Survey in Kuwait Houses. Berger.
[11]  Bender, F. (1974). Geology of Jordan (N. R. Authority, Trans. Vol. 7). Natural Resources Authority and German Geological Mission in Jordan.
[12]  Borgoni, R., Tritto, V., Bigliotto, C., & De Bartolo, D. (2011). A Geostatistical Approach to Assess the Spatial Association between Indoor Radon Concentration, Geological Features and Building Characteristics: The Case of Lombardy, Northern Italy. International Journal of Environmental Research and Public Health, 8, 1420-1440.
https://doi.org/10.3390/ijerph8051420
[13]  Bossew, P. (2015). Mapping the Geogenic Radon Potential and Estimation of Radon Prone Areas in Germany. Radiation Emergency Medicine, 4, 13-20.
[14]  Burdon, D. J., & Quennell, A. M. (1959). Handbook of the Geology of Jordan. Government of the Hashemite Kingdom of Jordan.
[15]  Choubey, V. M., & Ramola, R. C. (1997). Correlation between Geology and Radon Levels in Groundwater, Soil and Indoor Air in Bhilangana Valley, Garhwal Himalaya, India. Environmental Geology, 32, 258-262.
https://doi.org/10.1007/s002540050215
[16]  Ciotoli, G., Voltaggio, M., Tuccimei, P., Soligo, M., Pasculli, A., Beaubien, S. E. et al. (2017). Geographically Weighted Regression and Geostatistical Techniques to Construct the Geogenic Radon Potential Map of the Lazio Region: A Methodological Proposal for the European Atlas of Natural Radiation. Journal of Environmental Radioactivity, 166, 355-375.
https://doi.org/10.1016/j.jenvrad.2016.05.010
[17]  Cosma, C., Cucoş-Dinu, A., Papp, B., Begy, R., & Sainz, C. (2013). Soil and Building Material as Main Sources of Indoor Radon in Băiţa-Ştei Radon Prone Area (Romania). Journal of Environmental Radioactivity, 116, 174-179.
https://doi.org/10.1016/j.jenvrad.2012.09.006
[18]  Dragović, S., Janković, L., & Onjia, A. (2006). Assessment of Gamma Dose Rates from Terrestrial Exposure in Serbia and Montenegro. Radiation Protection Dosimetry, 121, 297-302.
https://doi.org/10.1093/rpd/ncl099
[19]  EPA (2003). EPA Assessment of Risks from Radon in Homes (0017-9078).
[20]  EURATOM (2013). COUNCIL DIRECTIVE 2013/59/EURATOM of 5 December 2013 Laying Down Basic Safety Standards for Protection against the Dangers Arising from Exposure to Ionising Radiation, and Repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom.
[21]  Fennel, S. G., Mackin, G. M., Madden, J. S., McGarry, A. T., Duffy, J. T., O’Colmain, M. et al. (2002). Radon in Dwellings. The Irish National Radon survey. RPH-02/1. Radiological Protection Institute of Ireland.
[22]  Florică, Ş., Burghele, B., Bican-Brişan, N., Begy, R., Codrea, V., Cucoş, A. et al. (2020). The Path from Geology to Indoor Radon. Environmental Geochemistry and Health, 42, 2655-2665.
https://doi.org/10.1007/s10653-019-00496-z
[23]  Giustini, F., Ciotoli, G., Rinaldini, A., Ruggiero, L., & Voltaggio, M. (2019). Mapping the Geogenic Radon Potential and Radon Risk by Using Empirical Bayesian Kriging Regression: A Case Study from a Volcanic Area of Central Italy. Science of The Total Environment, 661, 449-464.
https://doi.org/10.1016/j.scitotenv.2019.01.146
[24]  Green, B. M. R., Miles, J. C. H., Bradley, E. J., & Rees, D. M. (2002). Radon Atlas of England and Wales. National Radiological protection Board, Didcot, UK, (NRBP-W26).
[25]  Gupta, S. (1994). Statistical Methods. Chand.
[26]  Hámori, K., Tóth, E., Losonci, A., & Minda, M. (2006). Some Remarks on the Indoor Radon Distribution in a Country. Applied Radiation and Isotopes, 64, 859-863.
https://doi.org/10.1016/j.apradiso.2006.02.098
[27]  Haneberg, W. C., Wiggins, A., Curl, D. C., Greb, S. F., Andrews, W. M., Rademacher, K. et al. (2020). A Geologically Based Indoor‐radon Potential Map of Kentucky. GeoHealth, 4, e2020GH000263.
https://doi.org/10.1029/2020gh000263
[28]  Hasan, M. M., Janik, M., Pervin, S., & Iimoto, T. (2023). Preliminary Population Exposure to Indoor Radon and Thoron in Dhaka City, Bangladesh. Atmosphere, 14, Article 1067.
https://doi.org/10.3390/atmos14071067
[29]  IAEA (2015). Protection of the Public against Exposure Indoors Due to Radon and Other Natural Sources of Radiation. International Atomic Energy Agency.
https://www-pub.iaea.org/mtcd/publications/pdf/pub1651web-62473672.pdf
[30]  ICRP (2007). The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103.
[31]  ICRP (2014). Radiological Protection against Radon Exposure. ICRP Publication 126.
[32]  ICRP (2017). Annals of the ICRP, ICRP PUBLICATION 137 Occupational Intakes of Radionuclides. Annals of the ICRP, Part 3.
[33]  ICRU (2012). International Commission of Radiation Units Measurements Measurement and Reporting of Radon Exposures. ICRU Report 88. Journal of the ICRU, 12, 1-191.
[34]  Ielsch, G., Thiéblemont, D., Labed, V., Richon, P., Tymen, G., Ferry, C. et al. (2001). Radon (222Rn) Level Variations on a Regional Scale: Influence of the Basement Trace Element (U, Th) Geochemistry on Radon Exhalation Rates. Journal of Environmental Radioactivity, 53, 75-90.
https://doi.org/10.1016/s0265-931x(00)00106-5
[35]  Ivanova, K., Stojanovska, Z., Kunovska, B., Chobanova, N., Badulin, V., & Benderev, A. (2019). Analysis of the Spatial Variation of Indoor Radon Concentrations (National Survey in Bulgaria). Environmental Science and Pollution Research, 26, 6971-6979.
https://doi.org/10.1007/s11356-019-04163-9
[36]  Jordan Department of Statistics (2017). The Estimated Population of the Kingdom by Administrative Divisions for 2017. Hashmite Kingdom of Jordan.
http://dosweb.dos.gov.jo/population/population-2/
[37]  Kemski, J., Klingel, R., & Siehl, A. (1996). Classification and Mapping of Radon-Affected Areas in Germany. Environment International, 22, 789-798.
https://doi.org/10.1016/s0160-4120(96)00185-7
[38]  Kotrappa, P., Dempsey, J. C., Ramsey, R. W., & Stieff, L. R. (1990). A Practical E-PERMTM (Electret Passive Environmental Radon Monitor) System for Indoor 222Rn Measurement. Health Physics, 58, 461-467.
https://doi.org/10.1097/00004032-199004000-00008
[39]  Kovaltchouk, V. (2024). Analysis of Radon Progeny Contamination: Influences of Geological and Housing Characteristics. International Journal of Environmental Analytical Chemistry.
https://doi.org/10.1080/03067319.2024.2369194
[40]  Levesque, B., Gauvin, D., McGregor, R. G., Martel, R., Gingras, S., Dontigny, A. et al. (1997). Radon in Residences. Health Physics, 72, 907-914.
https://doi.org/10.1097/00004032-199706000-00009
[41]  Minda, M., Tóth, G., Horváth, I., Barnet, I., Hámori, K., & Tóth, E. (2009). Indoor Radon Mapping and Its Relation to Geology in Hungary. Environmental Geology, 57, 601-609.
https://doi.org/10.1007/s00254-008-1329-6
[42]  Neznal, M., Neznal, M., Matolin, M., Barnet, I., & Miksova, J. (2004). The New Method for Assessing the Radon Risk of Building Sites. Czech Geological Survey.
[43]  NRPA (2000). Naturally Occurring Radioactivity in the Nordic Countries. Recommendations. Norwegian Radiation Protection Authority.
[44]  Nuhu, H., Hashim, S., Aziz Saleh, M., Syazwan Mohd Sanusi, M., Hussein Alomari, A., Jamal, M. H. et al. (2021). Soil Gas Radon and Soil Permeability Assessment: Mapping Radon Risk Areas in Perak State, Malaysia. PLOS ONE, 16, e0254099.
https://doi.org/10.1371/journal.pone.0254099
[45]  Othman, I., & Yassine, T. (1995). Natural Radioactivity in the Syrian Environment. Science of The Total Environment, 170, 119-124.
https://doi.org/10.1016/0048-9697(95)04610-d
[46]  Othman, I., Hushari, M., Raja, G., & Alsawaf, A. (1996). Radon in Syrian Houses. Journal of Radiological Protection, 16, 45-50.
https://doi.org/10.1088/0952-4746/16/1/006
[47]  Özbay, T., & Karadeniz, Ö. (2016). Indoor Radon Measurement in Izmir Province, Turkey. International Journal of Environmental Analytical Chemistry, 96, 752-762.
https://doi.org/10.1080/03067319.2016.1196684
[48]  Pervin, S., Yeasmin, S., Khandaker, M. U., & Begum, A. (2022). Radon Concentrations in Indoor and Outdoor Environments of Atomic Energy Centre Dhaka, Bangladesh, and Concomitant Health Hazards. Frontiers in Nuclear Engineering, 1, Article 901818.
https://doi.org/10.3389/fnuen.2022.901818
[49]  Popit, A., & Vaupotič, J. (2002). Indoor Radon Concentrations in Relation to Geology in Slovenia. Environmental Geology, 42, 330-337.
https://doi.org/10.1007/s00254-002-0526-y
[50]  Pugliese, M., Quarto, M., Loffredo, F., Mazzella, A., & Roca, V. (2013). Indoor Radon Concentrations in Dwellings of Ischia Island. Journal of Environmental Protection, 4, 37-39.
https://doi.org/10.4236/jep.2013.48a2005
[51]  Ravikumar, P., & Somashekar, R. K. (2013). Estimates of the Dose of Radon and Its Progeny Inhaled Inside Buildings. European Journal of Environmental Sciences, 3, 88-95.
https://doi.org/10.14712/23361964.2015.10
[52]  Saleh, M. A., Ramli, A. T., Alajerami, Y., & Aliyu, A. S. (2013). Assessment of Environmental 226Ra, 232Th and 40K Concentrations in the Region of Elevated Radiation Background in Segamat District, Johor, Malaysia. Journal of Environmental Radioactivity, 124, 130-140.
https://doi.org/10.1016/j.jenvrad.2013.04.013
[53]  Sarrou, I., & Pashalidis, I. (2003). Radon Levels in Cyprus. Journal of Environmental Radioactivity, 68, 269-277.
https://doi.org/10.1016/s0265-931x(03)00066-3
[54]  Sundal, A., Henriksen, H., Soldal, O., & Strand, T. (2004). The Influence of Geological Factors on Indoor Radon Concentrations in Norway. Science of The Total Environment, 328, 41-53.
https://doi.org/10.1016/j.scitotenv.2004.02.011
[55]  Szabó, K. Z., Jordan, G., Horváth, Á., & Szabó, C. (2013). Dynamics of Soil Gas Radon Concentration in a Highly Permeable Soil Based on a Long-Term High Temporal Resolution Observation Series. Journal of Environmental Radioactivity, 124, 74-83.
https://doi.org/10.1016/j.jenvrad.2013.04.004
[56]  Tung, S., Leung, J. K. C., Jiao, J. J., Wiegand, J., & Wartenberg, W. (2013). Assessment of Soil Radon Potential in Hong Kong, China, Using a 10-Point Evaluation System. Environmental Earth Sciences, 68, 679-689.
https://doi.org/10.1007/s12665-012-1782-0
[57]  Tzortzis, M., Svoukis, E., & Tsertos, H. (2004). A Comprehensive Study of Natural Gamma Radioactivity Levels and Associated Dose Rates from Surface Soils in Cyprus. Radiation Protection Dosimetry, 109, 217-224.
https://doi.org/10.1093/rpd/nch300
[58]  UNSCEAR (1988). Report of the United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations.
[59]  UNSCEAR (1993). Sources and Effects of Ionizing Radiation.
[60]  UNSCEAR (2000a). Sources and Effects of Ionizing Radiation, Report to the General Assembly with Scientific Annexes (Vol. 1). United Nations Publications.
[61]  UNSCEAR (2000b). Sources and Effects of Ionizing Radiation: Sources (Vol. 1). United Nations Publications.
[62]  USEPA (2019). Protocol for the Measurement of Radon in Homes and Workplaces. United States Environmental Protection Agency.
[63]  Valentin, J. (2007). The 2007 Recommendations of the International Commission on Radiological Protection (Vol. 37). Elsevier.
[64]  Van Dung, N., Thuan, D. D., Nhan, D. D., Carvalho, F. P., Van Thang, D., & Quang, N. H. (2022). Radiation Exposure in a Region with Natural High Background Radiation Originated from Rare Earth Element Deposits at Bat Xat District, Vietnam. Radiation and Environmental Biophysics, 61, 309-324.
https://doi.org/10.1007/s00411-022-00971-9
[65]  Weltner, A., Mäkeläinen, I., & Arvela, H. (2002). Radon Mapping Strategy in Finland. International Congress Series, 1225, 63-69.
https://doi.org/10.1016/s0531-5131(01)00551-9
[66]  White, S. B., Bergsten, J. W., Alexander, B. V., Rodman, N. F., & Phillips, J. L. (1992). Indoor 222Rn Concentrations in a Probability Sample of 43,000 Houses across 30 States. Health Physics, 62, 41-50.
https://doi.org/10.1097/00004032-199201000-00005
[67]  WHO (2009). WHO Handbook on Indoor Radon: A Public Health Perspective. World Health Organization.
[68]  WHO (2010). WHO Guidelines for Indoor Air Quality: Selected Pollutants. World Health Organization. Regional Office for Europe.
[69]  Zhu, H.-C., Charlet, J. M., & Tondeur, F. (1998). Geological Controls to the Indoor Radon Distribution in Southern Belgium. Science of The Total Environment, 220, 195-214.
https://doi.org/10.1016/s0048-9697(98)00259-9
[70]  Zlobina, A., Farkhutdinov, I., Carvalho, F. P., Wang, N., Korotchenko, T., Baranovskaya, N. et al. (2022). Impact of Environmental Radiation on the Incidence of Cancer and Birth Defects in Regions with High Natural Radioactivity. International Journal of Environmental Research and Public Health, 19, 8643.
https://doi.org/10.3390/ijerph19148643

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133