全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Interannual Relationship between ENSO and Tropical Cyclone Genesis over the Southwest Indian Ocean and Its Modulation by the Interdecadal Pacific Oscillation

DOI: 10.4236/gep.2025.133002, PP. 29-46

Keywords: Dynamic Genesis Potential Index (DGPI), Tropical Cyclogenesis, Southwest Indian Ocean (SWIO), El Ni?o-Southern Oscillation (ENSO), Interdecadal Pacific Oscillation (IPO)

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study investigates the interannual relationship between El Ni?o-Southern Oscillation (ENSO) and tropical cyclone (TC) genesis potential (measured by the Dynamic Genesis Potential Index or DGPI) over the Southwest Indian Ocean (SWIO) and its modulation by the Interdecadal Pacific Oscillation (IPO) during 1959-2020 based on observation and reanalysis. Results show that DGPI can well capture the spatial distribution and seasonal cycle of TC genesis over the SWIO. A positive correlation is found between ENSO and the SWIO-DGPI on interannual timescales, with higher (lower) DGPI and increased (decreased) TC occurrence frequency during El Ni?o (La Ni?a) years, indicating an important role of ENSO in modulating TC activity in the SWIO. Further analyses show that ENSO favors the SWIO TC genesis primarily through modulating vertical wind shear and upward motion. Furthermore, the interannual relationship between ENSO and the SWIO DGPI also exhibits remarkable interdecadal variations that are likely modulated by the IPO with strong (weak) correlation in positive (negative) IPO phases. This is because the ENSO-driven anomalies of vertical wind shear, upward motion, and low-level vorticity are larger under positive IPO phases than its negative phases, which favor the sensitivity of the SWIO TC genesis to ENSO and thus promote a higher correlation between the two. These findings highlight the importance of considering interdecadal variability when assessing the ENSO-TC relationship over the SWIO and contribute to improving seasonal prediction of TCs in the region.

References

[1]  Bister, M., & Emanuel, K. A. (2002). Low Frequency Variability of Tropical Cyclone Potential Intensity 1. Interannual to Interdecadal Variability. Journal of Geophysical Research: Atmospheres, 107, ACL 26-1-ACL 26-15.
https://doi.org/10.1029/2001jd000776
[2]  Camargo, S. J., & Wing, A. A. (2016). Tropical Cyclones in Climate Models. WIREs Climate Change, 7, 211-237.
https://doi.org/10.1002/wcc.373
[3]  Camargo, S. J., Emanuel, K. A., & Sobel, A. H. (2007). Use of a Genesis Potential Index to Diagnose ENSO Effects on Tropical Cyclone Genesis. Journal of Climate, 20, 4819-4834.
https://doi.org/10.1175/jcli4282.1
[4]  Crowley, T. J., Obrochta, S. P., & Liu, J. (2014). Recent Global Temperature “Plateau” in the Context of a New Proxy Reconstruction. Earth's Future, 2, 281-294.
https://doi.org/10.1002/2013ef000216
[5]  Duan, W., Yuan, J., Duan, X., & Feng, D. (2021). Seasonal Variation of Tropical Cyclone Genesis and the Related Large-Scale Environments: Comparison between the Bay of Bengal and Arabian Sea Sub-Basins. Atmosphere, 12, Article No. 1593.
https://doi.org/10.3390/atmos12121593
[6]  England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W. et al. (2014). Recent Intensification of Wind-Driven Circulation in the Pacific and the Ongoing Warming Hiatus. Nature Climate Change, 4, 222-227.
https://doi.org/10.1038/nclimate2106
[7]  Fyfe, J. C., Meehl, G. A., England, M. H., Mann, M. E., Santer, B. D., Flato, G. M. et al. (2016). Making Sense of the Early-2000s Warming Slowdown. Nature Climate Change, 6, 224-228.
https://doi.org/10.1038/nclimate2938
[8]  Gershunov, A., & Barnett, T. P. (1998). Interdecadal Modulation of ENSO Teleconnections. Bulletin of the American Meteorological Society, 79, 2715-2725.
https://doi.org/10.1175/1520-0477(1998)079<2715:imoet>2.0.co;2
[9]  Gray, W. M. (1979). Hurricanes: Their Formation, Structure and Likely Role in the Tropical Circulation. In D. B. Shaw (Ed.), Supplement to Meteorology over the Tropical Oceans (pp. 155-218). James Glaisher House.
[10]  Henley, B. J. (2017). Pacific Decadal Climate Variability: Indices, Patterns and Tropical-Extratropical Interactions. Global and Planetary Change, 155, 42-55.
https://doi.org/10.1016/j.gloplacha.2017.06.004
[11]  Henley, B. J., Gergis, J., Karoly, D. J., Power, S., Kennedy, J., & Folland, C. K. (2015). A Tripole Index for the Interdecadal Pacific Oscillation. Climate Dynamics, 45, 3077-3090.
https://doi.org/10.1007/s00382-015-2525-1
[12]  Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., & Thépaut, J.-N. (2023). ERA5 Monthly Averaged Data on Single Levels from 1940 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).
https://doi.org/10.24381/cds.f17050d7
[13]  Ho, C., Kim, J., Jeong, J., Kim, H., & Chen, D. (2006). Variation of Tropical Cyclone Activity in the South Indian Ocean: El Niño-Southern Oscillation and Madden-Julian Oscillation Effects. Journal of Geophysical Research: Atmospheres, 111.
https://doi.org/10.1029/2006JD007289
[14]  Hsieh, T., Zhang, B., Yang, W., Vecchi, G. A., Zhao, M., Soden, B. J. et al. (2023). The Influence of Large-Scale Radiation Anomalies on Tropical Cyclone Frequency. Journal of Climate, 36, 5431-5441.
https://doi.org/10.1175/jcli-d-22-0449.1
[15]  Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., & Neumann, C. J. (2010). The International Best Track Archive for Climate Stewardship (IBTrACS). Bulletin of the American Meteorological Society, 91, 363-376.
https://doi.org/10.1175/2009bams2755.1
[16]  Kosaka, Y., & Xie, S. (2013). Recent Global-Warming Hiatus Tied to Equatorial Pacific Surface Cooling. Nature, 501, 403-407.
https://doi.org/10.1038/nature12534
[17]  Kosaka, Y., & Xie, S. (2016). The Tropical Pacific as a Key Pacemaker of the Variable Rates of Global Warming. Nature Geoscience, 9, 669-673.
https://doi.org/10.1038/ngeo2770
[18]  Kuleshov, Y., Chane Ming, F., Qi, L., Chouaibou, I., Hoareau, C., & Roux, F. (2009). Tropical Cyclone Genesis in the Southern Hemisphere and Its Relationship with the ENSO. Annales Geophysicae, 27, 2523-2538.
https://doi.org/10.5194/angeo-27-2523-2009
[19]  Li, W., Li, L., & Deng, Y. (2015). Impact of the Interdecadal Pacific Oscillation on Tropical Cyclone Activity in the North Atlantic and Eastern North Pacific. Scientific Reports, 5, Article No. 12358.
https://doi.org/10.1038/srep12358
[20]  Livezey, R. E., & Smith, T. M. (1999). Covariability of Aspects of North American Climate with Global Sea Surface Temperatures on Interannual to Interdecadal Timescales. Journal of Climate, 12, 289-302.
https://doi.org/10.1175/1520-0442-12.1.289
[21]  Lorenzo, E. Di, Xu, T., Zhao, Y., Newman, M., Capotondi, A., Stevenson, S., Amaya, D. J., Anderson, B. T., Ding, R., Furtado, J. C., Joh, Y., Liguori, G., Lou, J., Miller, A. J., Navarra, G., Schneider, N., Vimont, D. J., Wu, S., & Zhang, H. (2025). Modes and Mechanisms of Pacific Decadal-Scale Variability. Annual Review of Marine Science, 15, 249-275.
[22]  Maher, N., Gupta, A. S., & England, M. H. (2014). Drivers of Decadal Hiatus Periods in the 20th and 21st Centuries. Geophysical Research Letters, 41, 5978-5986.
https://doi.org/10.1002/2014gl060527
[23]  Mavume, A., Rydberg, L., Rouault, M., & Lutjeharms, J. (2010). Climatology and Landfall of Tropical Cyclones in the South-West Indian Ocean. Western Indian Ocean Journal of Marine Science, 8, 15-36.
https://doi.org/10.4314/wiojms.v8i1.56672
[24]  Moore, G. W. K., Halfar, J., Majeed, H., Adey, W., & Kronz, A. (2017). Amplification of the Atlantic Multidecadal Oscillation Associated with the Onset of the Industrial-Era Warming. Scientific Reports, 7, Article No. 40861.
https://doi.org/10.1038/srep40861
[25]  Murakami, H., & Wang, B. (2022). Patterns and Frequency of Projected Future Tropical Cyclone Genesis Are Governed by Dynamic Effects. Communications Earth & Environ-ment, 3, Article No. 77.
https://doi.org/10.1038/s43247-022-00410-z
[26]  Muthige, M. S., Malherbe, J., Englebrecht, F. A., Grab, S., Beraki, A., Maisha, T. R. et al. (2018). Projected Changes in Tropical Cyclones over the South-West Indian Ocean under Different Extents of Global Warming. Environmental Research Letters, 13, Article ID: 065019.
https://doi.org/10.1088/1748-9326/aabc60
[27]  Power, S., Casey, T., Folland, C., Colman, A., & Mehta, V. (1999). Inter-Decadal Modulation of the Impact of ENSO on Australia. Climate Dynamics, 15, 319-324.
https://doi.org/10.1007/s003820050284
[28]  Wang, B., & Chan, J. C. L. (2002). How Strong ENSO Events Affect Tropical Storm Activity over the Western North Pacific. Journal of Climate, 15, 1643-1658.
https://doi.org/10.1175/1520-0442(2002)015<1643:hseeat>2.0.co;2
[29]  Wang, B., & Murakami, H. (2020). Dynamic Genesis Potential Index for Diagnosing Present-Day and Future Global Tropical Cyclone Genesis. Environmental Research Letters, 15, Article ID: 114008.
https://doi.org/10.1088/1748-9326/abbb01

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133