In the last decade, the implementation of different Artificial Intelligence (AI) tools has rapidly increased and found application in several domains, e.g., healthcare, education, autonomous driving etc. Therefore, ensuring fairness in these systems has received increasing attention, becoming a topic of considerable interest over the last few years. This work focuses on gender bias within AI tools, by providing a comprehensive literature review that examines the causes and implications of this bias and presenting the findings of four experiments that the authors conducted within two widely used AI tools, namely ChatGPT 3.5 and 4.0 and Gemini 1.5 and 2.0 Flash. These experiments aim to investigate the potential presence of gender-biased responses, as well as the influence of sociocultural norms on the outcomes of these AI tools. Following this, the results are analyzed and mitigation strategies along with policy recommendations are proposed to support the development of Gender Unbiased AI tools.
References
[1]
Ahmed, I., Roy, A., Kajol, M., Hasan, U., Datta, P. P., & Reza, M. R. (2023). ChatGPT vs. Bard: A Comparative Study. Authorea.
[2]
Baumgartner, R., Arora, P., Bath, C., Burljaev, D., Ciereszko, K., Custers, B. et al. (2023). Fair and Equitable AI in Biomedical Research and Healthcare: Social Science Perspectives. ArtificialIntelligenceinMedicine,144, Article ID: 102658. https://doi.org/10.1016/j.artmed.2023.102658
[3]
Chan, M. Y., & Wong, S. M. A. (n.d.) Comparative Analysis to Evaluate Bias and Fairness across Large Language Models with Benchmarks. https://doi.org/10.31219/osf.io/mc762
[4]
Chen, Z. (2023). Ethics and Discrimination in Artificial Intelligence-Enabled Recruitment Practices. HumanitiesandSocialSciencesCommunications,10, Article No. 567. https://doi.org/10.1057/s41599-023-02079-x
[5]
Cirillo, D., Catuara-Solarz, S., Morey, C., Guney, E., Subirats, L., Mellino, S. et al. (2020). Sex and Gender Differences and Biases in Artificial Intelligence for Biomedicine and Healthcare. NPJDigitalMedicine,3, Article No. 81. https://doi.org/10.1038/s41746-020-0288-5
[6]
Deng, J., & Lin, Y. (2022). The Benefits and Challenges of ChatGPT: An Overview. FrontiersinComputingandIntelligentSystems,2, 81-83. https://doi.org/10.54097/fcis.v2i2.4465
[7]
Ferrara, E. (2023). Fairness and Bias in Artificial Intelligence: A Brief Survey of Sources, Impacts, and Mitigation Strategies. Sci,6, Article 3. https://doi.org/10.3390/sci6010003
[8]
Ferrer, X., Nuenen, T. V., Such, J. M., Cote, M., & Criado, N. (2021). Bias and Discrimination in AI: A Cross-Disciplinary Perspective. IEEETechnologyandSocietyMagazine,40, 72-80. https://doi.org/10.1109/mts.2021.3056293
[9]
Franzoni, V. (2023). Gender Differences and Bias in Artificial Intelligence. In J. Vallverdú (Ed.), Gender in AI and Robotics (pp. 27-43). Springer International Publishing. https://doi.org/10.1007/978-3-031-21606-0_2
[10]
Gross, N. (2023). What ChatGPT Tells Us about Gender: A Cautionary Tale about Performativity and Gender Biases in AI. Social Sciences, 12, Article 435. https://doi.org/10.3390/socsci12080435
[11]
Hall, P., & Ellis, D. (2023). A Systematic Review of Socio-Technical Gender Bias in AI Algorithms. OnlineInformationReview,47, 1264-1279. https://doi.org/10.1108/oir-08-2021-0452
[12]
Horvát, E., & González-Bailón, S. (2024). Quantifying Gender Disparities and Bias Online: Editors’ Introduction to “Gender Gaps in Digital Spaces” Special Issue. JournalofComputer-MediatedCommunication,29, zmad054. https://doi.org/10.1093/jcmc/zmad054
[13]
Hou, T., Tseng, Y., & Yuan, C. W. (. (2024). Is This AI Sexist? The Effects of a Biased AI’s Anthropomorphic Appearance and Explainability on Users’ Bias Perceptions and Trust. InternationalJournalofInformationManagement,76, Article ID: 102775. https://doi.org/10.1016/j.ijinfomgt.2024.102775
[14]
Kaplan, D. M., Palitsky, R., Arconada Alvarez, S. J., Pozzo, N. S., Greenleaf, M. N., Atkinson, C. A. et al. (2024). What’s in a Name? Experimental Evidence of Gender Bias in Recommendation Letters Generated by ChatGPT. JournalofMedicalInternetResearch,26, e51837. https://doi.org/10.2196/51837
[15]
Kartal, E. (2022). A Comprehensive Study on Bias in Artificial Intelligence Systems: Biased or Unbiased AI, That’s the Question! InternationalJournalofIntelligentInformationTechnologies,18, 1-23. https://doi.org/10.4018/ijiit.309582
[16]
Katsiampoura, G. (2024). From Critical Feminist Theory to Critical Feminist Revolutionary Pedagogy. AdvancesinAppliedSociology,14, 175-185. https://doi.org/10.4236/aasoci.2024.144012
[17]
Krishnan, A., & Rattani, A. (2023). A Novel Approach for Bias Mitigation of Gender Classification Algorithms Using Consistency Regularization. ImageandVisionComputing,137, Article ID: 104793. https://doi.org/10.1016/j.imavis.2023.104793
[18]
Kronqvist, A., & Rousi, R. A. (2023). A Quick Review of Ethics, Design Thinking, Gender, and AI Development. InternationalJournalofDesignCreativityandInnovation,11, 62-79. https://doi.org/10.1080/21650349.2022.2136762
[19]
Laffier, J., & Rehman, A. (2023). Deepfakes and Harm to Women. JournalofDigitalLifeandLearning,3, 1-21. https://doi.org/10.51357/jdll.v3i1.218
[20]
Lütz, F. (2022). Gender Equality and Artificial Intelligence in Europe. Addressing Direct and Indirect Impacts of Algorithms on Gender-Based Discrimination. ERAForum,23, 33-52. https://doi.org/10.1007/s12027-022-00709-6
[21]
Mahoney, T., Varshney, K., & Hind, M. (2020). AI Fairness. O’Reilly Media.
[22]
Manasi, A., Panchanadeswaran, S., Sours, E., & Lee, S. J. (2022). Mirroring the Bias: Gender and Artificial Intelligence. Gender,TechnologyandDevelopment,26, 295-305. https://doi.org/10.1080/09718524.2022.2128254
[23]
Marinucci, L., Mazzuca, C., & Gangemi, A. (2023). Exposing Implicit Biases and Stereotypes in Human and Artificial Intelligence: State of the Art and Challenges with a Focus on Gender. AI&Society,38, 747-761. https://doi.org/10.1007/s00146-022-01474-3
[24]
Mittermaier, M., Raza, M. M., & Kvedar, J. C. (2023). Bias in AI-Based Models for Medical Applications: Challenges and Mitigation Strategies. NPJDigitalMedicine,6, Article No. 113. https://doi.org/10.1038/s41746-023-00858-z
[25]
Nadeem, A., Marjanovic, O., & Abedin, B. (2022). Gender Bias in AI-Based Decision-Making Systems: A Systematic Literature Review. AustralasianJournalofInformationSystems,26, 1-34. https://doi.org/10.3127/ajis.v26i0.3835
[26]
Newstead, T., Eager, B., & Wilson, S. (2023). How AI Can Perpetuate—Or Help Mitigate—Gender Bias in Leadership. OrganizationalDynamics,52, Article ID: 100998. https://doi.org/10.1016/j.orgdyn.2023.100998
[27]
O’Connor, S., & Liu, H. (2023). Gender Bias Perpetuation and Mitigation in AI Technologies: Challenges and Opportunities. AI&Society,39, 2045-2057.
[28]
Prates, M. O. R., Avelar, P. H., & Lamb, L. C. (2020). Assessing Gender Bias in Machine Translation: A Case Study with Google Translate. NeuralComputingandApplications,32, 6363-6381. https://doi.org/10.1007/s00521-019-04144-6
[29]
Roselli, D., Matthews, J., & Talagala, N. (2019). Managing Bias in AI. In CompanionProceedingsof the 2019WorldWideWebConference (pp. 539-544). ACM. https://doi.org/10.1145/3308560.3317590
[30]
Shrestha, S., & Das, S. (2022). Exploring Gender Biases in ML and AI Academic Research through Systematic Literature Review. FrontiersinArtificialIntelligence,5, Article 976838. https://doi.org/10.3389/frai.2022.976838
[31]
Singh, S. K., Kumar, S., & Mehra, P. S. (2023). Chat GPT & Google Bard AI: A Review. In 2023InternationalConferenceonIoT,CommunicationandAutomationTechnology(ICICAT) (pp. 1-6). IEEE. https://doi.org/10.1109/icicat57735.2023.10263706
[32]
Skordoulis, K. (2016). Science, Knowledge Production and Social Practice. KnowledgeCultures,4, 1-18
[33]
Sun, L., Wei, M., Sun, Y., Suh, Y. J., Shen, L., & Yang, S. (2024). Smiling Women Pitching Down: Auditing Representational and Presentational Gender Biases in Image-Generative AI. JournalofComputer-MediatedCommunication,29, zmad045. https://doi.org/10.1093/jcmc/zmad045
[34]
Waelen, R., & Wieczorek, M. (2022). The Struggle for AI’s Recognition: Understanding the Normative Implications of Gender Bias in AI with Honneth’s Theory of Recognition. Philosophy&Technology,35, Article No. 53. https://doi.org/10.1007/s13347-022-00548-w
[35]
Wang, L. (2020). The Three Harms of Gendered Technology. AustralasianJournalofInformationSystems,24, 1-9. https://doi.org/10.3127/ajis.v24i0.2799
[36]
Wellner, G. P. (2020). When AI Is Gender-Biased. Humana Mente JournalofPhilosophicalStudies,13, 127-150.
[37]
Xivuri, K., & Twinomurinzi, H. (2023). How AI Developers Can Assure Algorithmic Fairness. DiscoverArtificialIntelligence,3, Article No. 27. https://doi.org/10.1007/s44163-023-00074-4