全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Determination, Speciation and Bioavailability of Trace Metals Elements in Sabodala Mine Tailings

DOI: 10.4236/jep.2025.163011, PP. 225-238

Keywords: Tailings, Contamination, Trace Metals Elements, Sabodala Gold Operations

Full-Text   Cite this paper   Add to My Lib

Abstract:

The risk of ecotoxicity from mine tailings depends on the bioavailable fraction of heavy metals in the soil, which is closely related to the biological and physico-chemical environment of the soils. The behavior, bioavailability and toxicity of heavy metals in soil depend essentially on their chemical composition. This paper seeks to quantify trace metal elements (TMEs) in mine tailings and to estimate the bioavailability and speciation of TMEs in mine tailings from the Sabodala mine using Tessier sequential extraction. The high metal levels found in the mine tailings revealed clear metallic contamination, with significant enrichment in certain elements such as arsenic (408.1 ppm), antimony (79.46 ppm), nickel (156.42 ppm) and Cd (4.16 ppm). These levels are well above the local geochemical background. This large difference is the result of human mining activity, mainly due to the geological nature of the rocks mined. Speciation studies revealed that 95% of the antimony is retained in the residual fraction, reflecting the limited toxicity of this metalloid. The average concentrations of arsenic, nickel and cadmium in the residual fractions are significant (61%, 51% and 52% respectively). This is followed by the sulphide phase, the carbonate phase, the iron and manganese oxide phase and finally the exchangeable phase. These last four phases, representing the labile fraction, contain relatively high levels of metallic elements, likely to contaminate the water and plants in the region. This labile fraction results in a high potential for mobility if conditions become more acidic. The potential mobility factors for arsenic and antimony are 5% and 2% respectively. These two metalloids (As, Sb) associated with crystalline and non-crystalline oxide, hydroxide or sulphide minerals, are considered immobile and have a low risk of polluting groundwater. Cadmium and nickel can be considered the most mobile elements in mine tailings, as around 12% and 10% respectively are found in the exchangeable and carbonate fractions.

References

[1]  Collon, P. (2003) Evolution de la qualité de l’eau dans les mines abandonnées du bassin ferrifère lorrain. De l’expérimentation en laboratoire à la modélisation in situ. Doctorat, Institut National Polytechnique de Lorraine-INPL.
[2]  Lghoul, M., Kchikach, A., et al. (2012) Etude géophysique et hydrogéologique du site minier abandonné de Kettara (région de Marrakech, Maroc): Contribution au projet de réhabilitation. Hydrological Sciences Journal, 57, 370 381.
https://doi.org/10.1080/02626667.2011.637495
[3]  Bussière, B., Aubertin, M., Zagury, G.J., et al. (2005) Principaux défis et pistes de solution pour la restauration des sites miniers abandonnés générateurs de drainage minier acide. 2e symposium sur lenvironnement et les mines, Rouyn-Noranda, 15 May 2005.
https://publications.polymtl.ca/24336/
[4]  Tessier, A., Campbell, P. and Bosson, M. (1979) Sequential Extraction Procedure for Speciation of Particulate Trace Elements. Analytical Chemistry, 51, 844-851.
https://doi.org/10.1021/ac50043a017
[5]  Stone, M. and Marsalek, J. (1996) Trace Metal Composition and Speciation in Street Sediment: Sault Ste. Marie, Canada. Water, Air, & Soil Pollution, 87, 149-169.
https://doi.org/10.1007/BF00696834
[6]  Ure, A.M. and Davidson, C.M. (2001) Chemical Speciation in the Environment. 2nd Edition, Blackwell Science Ltd.
https://doi.org/10.1002/9780470988312.ch10
[7]  Marin, B., Valladone, M., Polve, M. and Monaco, A. (1997) Reproducibility Testing of a Sequential Extraction Scheme for the Determination of Trace Metal Speciation in a Marine Reference Sediment by Inductively Coupled Plasma-Mass Spectrometry. Analytica Chimica Acta, 342, 91-112.
https://doi.org/10.1016/S0003-2670(96)00580-6
[8]  Sutherland, A. (2000) Comparison between Non-Residual Al, Co, Cu, Fe, Mn, Ni, Pb and Zn Released by a Three-Step Sequential Extraction Procedure and a Dilute Hydrochloric Acid Leach for Soil and Road Deposited Sediment. Applied Geochemistry, 17, 353-365.
https://doi.org/10.1016/S0883-2927(01)00095-6
[9]  Kabala, C. and Singh, B.R. (2001) Fractionation and Mobility of Copper, Lead and Zinc in Soil Profiles in the Vicinity of a Copper Smelter. Journal of Environmental Quality, 30, 485-492.
https://doi.org/10.2134/jeq2001.302485x
[10]  Narwal, R.P., Singh, B.R. and Salbu, B. (1999) Association of Cadmium, Zinc, Copper, and Nickel with Components in Naturally Heavy Metal-Rich Soils Studied by Parallel and Sequential Extractions. Communications in Soil Science and Plant Analysis, 30, 1209-1230.
https://doi.org/10.1080/00103629909370279
[11]  Salbu, B., Krekling, T. and Oughton, D.H. (1998) Characterization of Radioactive Particles in the Environment. Analyst, 123, 843-849.
https://doi.org/10.1039/a800314i
[12]  Rudnick, R.L. and Gao, S. (2003) Composition of the Continental Crust. Treatise on Geochemistry, 3, 1-64.
https://doi.org/10.1016/B0-08-043751-6/03016-4
[13]  Ahmedat, C., Dabi, S. and Zahraoui, M., et al. (2018) Spatial Distribution of Stream Sediment Pollution by Toxic Trace Elements at Tourtit and Ichoumellal Abandoned Mining Areas (Central Morocco). Arabian Journal of Geosciences, 11, Article No. 55.
https://doi.org/10.1007/s12517-018-3390-0
[14]  Ayari, J., Barbieri, M., Agnan, Y., Sellami, A., Braham, A., Dhaha, F. and Charef, A. (2021) Trace Element Contamination in the Mine-Affected Stream Sediments of Oued Rarai in North-Western Tunisia: A River Basin Scale Assessment. Environmental Geochemistry and Health, 43, 4027-4042.
https://doi.org/10.1007/s10653-021-00887-1
[15]  Siahcheshm, K., Orberger, B., & Wagner, C. (2022). Bioavailability and Heavy Metals Speciation Assessment in the Contaminated Soils of Doustbaglu Mineralized Area, NW Iran. Environmental Earth Sciences, 81, 34.
https://doi.org/10.1007/s12665-021-10162-2
[16]  Benvenuti, M., Mascaro, I. and Corsini, F., et al. (1997) Mine Waste Dumps and Heavy Metal Pollution in Abandoned Mining District of Boccheggiano (Southern Tuscany, Italy). Environmental Geology, 30, 238-243.
https://doi.org/10.1007/s002540050152
[17]  El Amari, K., Valera, P., Hibti, M., Pretti, S., Marcello, A., & Essarraj, S. (2014). Impact of Mine Tailings on Surrounding Soils and Ground Water: Case of Kettara old Mine, Morocco. Journal of African Earth Sciences, 100, 437-449.
https://doi.org/10.1016/j.jafrearsci.2014.07
[18]  El Hachimi, M.L., Fekhaoui, M., El Abidi, A. and Rhoujatti, A. (2014) Contamination des sols par les métaux lourds à partir de mines abandonnées: Le cas des mines Aouli-Mibladen-Zeïda au Maroc. Cahiers Agricultures, 23, 213-219.
https://doi.org/10.1684/agr.2014.0702
[19]  Diouf, A.F. (2020) Contribution à l’amélioration de la connaissance de la qualité des ressources en eaux souterraines et de surface en zone de socle: Cas du périmètre d’exploration aurifère Kanoumba, Kédougou-Sénégal. Mémoire de master. Cheikh Anta Diop de Dakar (Institut des sciences de l’environnement).
[20]  Bondu, R. (2017) Origine et distribution de l’arsenic dans l’eau souterraine de l’aquifère rocheux fracturé du bouclier canadien en Abitibi-Témiscamingue. Phd, Université du Québec en Abitibi-Témiscamingue.
https://depositum.uqat.ca/id/eprint/704/
[21]  Plante, B. (2010) Évaluation des principaux facteurs d’influence sur la prédiction du drainage neutre contaminé. Phd, Université du Québec à en Abitibi-Témiscamingue.
https://depositum.uqat.ca/id/eprint/31/
[22]  Hetland, S., Martinsen, I., Radzuk, B. and Thomassen, Y. (1991) Species Analysis of Inorganic Compounds in Workroom Air by Atomic Spectroscopy. Analytical Sciences, 7, 1029-1032.
https://doi.org/10.2116/analsci.7.Supple_1029
[23]  Quevauviller, P., Rauret, R., Rubio, G., Lopezsanchez, J.F., Ure, A.M., Bacon, J.R. and Muntau, H. (1997) Certified Reference Materials for the Quality Control of EDTA-and Acetic Acid-Extractable Contents of Trace Elements in Sewage Sludge Amended Soils (CRMs 483 and 484). FreseniusJournal of Analytical Chemistry, 357, 611-618.
https://doi.org/10.1007/s002160050222
[24]  He, M.C. (2007) Distribution and Phytoavailability of Antimony at an Antimony Mining and Smelting Area, Hunan, China. Environmental Geochemistry and Health, 29, 209-219.
https://doi.org/10.1007/s10653-006-9066-9
[25]  Gabteni, N. (1986). Géochimie analytique et expérimentale des éléments traces dans les sols. Application aux sols calcaires de la Tunisie du Nord. These de Doctorat. Faculte des Sciences. Tunis, 136 p.
[26]  Sebei, A., Chaabani, F. and Ouerfelli, M.K. (2005) Impacts des rejets miniers sur le sol et les plantes de la région de Boujaber (NO. Tunisie) Fractionnement chimique des métaux lourds dans les sols. GEO-ECO-TROP, 29, 37-50.
[27]  Added, A. (1981) Etude géochimique et sédimentologique des sédiments marins du Delta du Rhône. Doctoral Thesis. Université Pierre et Marie Curie (Paris).
[28]  Lopez-Sanchez, J.F., Rubio, R., Samitier, C. and et Rauret, G. (1996) Trace Metal Partitioning in Marine Sediments and Sludges Deposited of the Coast of Barcelona (Spain). Water Research, 30, 153-159.
https://doi.org/10.1016/0043-1354(95)00129-9
[29]  Newman, M., Jagoe, C., Newman, M.C. and Jagoe, C.H. (1994) Ligands and the Bioavailability of Metals in Aquatic Environments. Bioavailability: Physical, Chemical and Biological Interactions, CRC Press, 39.
[30]  Adriano, D.C. (2001) Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals. Springer-Verlag, 867 p.
[31]  Jansen, B., Nierop, K.G.J. and Verstraten, J.M. (2003) Mobility of Fe(II), Fe(III) and Al in Acidic Forest Soils Mediated by Dissolved Organic Matter: Influence of Solution pH and Metal/Organic Carbon Ratios. Geoderma, 113, 323-340.
https://doi.org/10.1016/S0016-7061(02)00368-3
[32]  Lavazzo, P., Adamo, P., Boni, M., Hillier, S. and Zampella, M. (2012) Mineralogy and Chemical Forms of Lead and Zinc in Abandoned Mine Wastes and Soils: An Example from Morocco. Journal of Geochemical Exploration, 113, 56-67.
https://doi.org/10.1016/j.gexplo.2011.06.001
[33]  Jeannot, R., Lemiere, B., Chiron, S., Augustin, F. and Darmendrail, D. (2000) Guide méthodologique pour l’analyse des sols pollués. BRGM/RP-50128-FR.
https://infoterre.brgm.fr/rapports/RP-50128-FR.pdf
[34]  Chopin, E.I.B., Black, S., Hodson, M.E., Coleman, M.L. and Alloway, B.J. (2003) A Preliminary Investigation into Mining and Smelting Impacts on Trace Element Concentrations in the Soil and Vegetation around Tharsis, SW Spain. Mineralogical Magazine, 67, 279-288.
https://doi.org/10.1180/0026461036720099
[35]  Ogundiran, O. and Osibanjo, M.B. (2009) Mobility and Speciation of Heavy Metals in Soils Impacted by Hazardous Waste. Chemical Speciation & Bioavailability, 21, 59-69.
https://doi.org/10.3184/095422909X449481
[36]  Singh, K.P., Mohan, D., Singh, V.K. and Malik, A. (2005) Studies on Distribution and Fractionation of Heavy Metals in Gomti River Sediments—A Tributary of the Ganges, India. Journal of Hydrology, 312, 14-27.
https://doi.org/10.1016/j.jhydrol.2005.01.021
[37]  Jain, C.K. and Ran, D. (2004) Metal Fractionation Study on Bed Sediments of River Yamuna, India. Water Research, 38, 569-578.
https://doi.org/10.1016/j.watres.2003.10.042
[38]  Kapusta, P., Szarek-Łukaszewska, G. and Stefanowicz, A.M. (2011) Direct and Indirect Effects of Metal Contamination on Soil Biota in a Zn-Pb Post-Mining and Smelting Area (S Poland). Environmental Pollution, 159, 1516-1522.
https://doi.org/10.1016/j.envpol.2011.03.015
[39]  Vaněk, A., Borůvka, L., Drábek, O., Mihaljevič, M. and Komárek, M. (2005) Mobility of Lead, Zinc and Cadmium in Alluvial Soils Heavily Polluted by Smelting Industry. Plant, Soil and Environment, 51, 316-321.
https://doi.org/10.17221/3592-PSE
[40]  Tighe, M., Lock wood, P. and Wilson, S. (2005) Adsorption of Antimony (V) by Flood-Plain Soils, Amorphous Iron (III) Hydroxide and Humic Acid. Journal of Environmental Monitoring, 7, 1177-1185.
[41]  Denys, S., Tack, K., Caboche, J. and Delalain, P. (2008) Bioaccessibility, Solid Phase Distribution, and Speciation of SB in Soils and in Digestive Fluids. Chemosphere, 74, 711-716.
https://doi.org/10.1016/j.chemosphere.2008.09.088
[42]  Fillela, M. (2011) Antimony Interactions with Heterogeneous Complexants in Waters, Sediments and Soils: A Review of Data Obtained in Bulk Samples. Earth-Science Reviews, 107, 325-341.
https://doi.org/10.1016/j.earscirev.2011.04.002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133