|
一种井壁稳定剂SACA-1的合成与性能评价
|
Abstract:
在石油与天然气钻探过程中,如何保证破碎性地层的稳定一直是困扰钻井领域的一大技术难点。由于破碎性地层的特殊性,钻井过程中30%左右的井壁失稳问题发生在破碎性地层。室内选择N-乙烯基吡咯烷酮、2-丙烯酰胺基2-甲基丙磺酸(AMPS)、二甲基二烯丙基氯化铵、r-丙烯酸脂丙基三甲氧基硅烷等单体,优化合成条件,单体质量比4:2:1:1,单体浓度为30%,反应时间为4 h,反应温度为60℃,引发剂(过硫酸钾/亚硫酸氢钠)加量为0.5%,反应pH为8~9,合成了一种适合于破碎性地层的井壁稳定剂。对其分子结构进行了表征,分析了作用机理。性能评价结果表明,井壁稳定剂SACA-1抗温达到220℃,现场岩屑在3% SACA-1溶液中的热滚回收率为80.03%;在空气与水中联接后抗剪切强度分别为0.301 MPa和0.206 MPa,单轴抗压强度为8.47 MPa,3% SACA-1加入至聚磺钻井液和KCl-聚合物钻井液后,性能稳定,热滚回收率分别为85.8%和88.7%,对于破碎性地层有较好的稳定效果。
In the process of oil and gas drilling, how to ensure the stability of fractured formations has always been a major technical difficulty in the drilling field. Due to the particularity of fractured formations, about 30% of the borehole instability problems occur in fractured formations during the drilling process. N-vinylpyrrolidone, 2-acrylamide 2-methylpropanesulfonic acid (AMPS), dimethyldiallylammonium chloride, r-acrylate propyltrimethoxysilane and other monomers were selected indoors, and the synthesis conditions were optimized, the monomer mass ratio was 4:2:1:1, the monomer concentration was 30%, the reaction time was 4 h, the reaction temperature was 60?C, the initiator (potassium persulfate/sodium bisulfite) was 0.5%, and the reaction pH was 8~9, and a borehole stabilizer suitable for fractured formations was synthesized. Its molecular structure was characterized and the mechanism of action was analyzed. The performance evaluation results show that the temperature resistance of the borehole stabilizer SACA-1 reaches 220?C, and the thermal recovery rate of on-site cuttings in 3% SACA-1 solution is 80.03%. After the connection between air and water, the shear strength is 0.301 MPa and 0.206 MPa, the uniaxial compressive strength is 8.47 MPa, and the performance is stable after 3% SACA-1 is added to the polysulfur drilling fluid and KCl-polymer drilling fluid, and the recovery rate of thermal roll is 85.8% and 88.7%, respectively, which has a good stability effect on the fractured formation.
[1] | 李蕾, 郭保雨, 王旭东, 等. 一种化学胶结类防塌剂防塌效果的评价方法[J]. 钻井液与完井液, 2020, 37(5): 608-612. |
[2] | 王松, 胡三清. 井壁稳定的理论与实践[M]. 武汉: 湖北科学技术出版社, 2002. |
[3] | 王光兵. 硬脆性页岩水化特征及其对井壁坍塌压力的影响[D]: [硕士学位论文]. 成都: 西南石油大学, 2017. |
[4] | 金衍, 薄克浩, 张亚洲, 等. 深层硬脆性泥页岩井壁稳定力学化学耦合研究进展与思考[J]. 石油钻探技术, 2023, 51(4): 159-167. |
[5] | 刘海龙, 谢涛, 张磊, 等. 层理地层基质与弱面坍塌失稳规律分析[J]. 西南石油大学学报, 自然科学版, 2021, 43(2): 128-137. |
[6] | 杨虎. 硬脆性地层井眼失稳剪切破坏程度定量预测[J]. 钻采工艺, 2018, 41(3): 21-24. |
[7] | 马天寿, 陈平, 王旭东, 等. 页岩气储层井周孔隙压力传递数值分析方法[J]. 石油学报, 2016, 37(5): 660-671. |
[8] | Yu, M., Chen, G., Chenevert, M.E. and Sharma, M.M. (2001) Chemical and Thermal Effects on Wellbore Stability of Shale Formations. SPE Annual Technical Conference and Exhibition, New Orleans, 30 September-3 October 2001, SPE-71366-MS. https://doi.org/10.2118/71366-ms |
[9] | Hale, A.H., Mody, F.K. and Salisbury, D.P. (1993) The Influence of Chemical Potential on Wellbore Stability. SPE Drilling & Completion, 8, 207-216. https://doi.org/10.2118/23885-pa |
[10] | Ghassemi, A. and Diek, A. (2002) Porothermoelasticity for Swelling Shales. Journal of Petroleum Science and Engineering, 34, 123-135. https://doi.org/10.1016/s0920-4105(02)00159-6 |
[11] | 王伟吉, 李大奇, 金军斌, 等. 顺北油气田破碎性地层井壁稳定技术难题与对策[J]. 科学技术与工程, 2022, 20(13): 5205-5213. |
[12] | 陈修平, 李双贵, 于洋, 等. 顺北油气田碳酸盐岩破碎性地层防塌钻井液技术[J]. 石油钻探技术, 2020, 48(1): 1-5. |
[13] | 苏晓明, 练章华, 方俊伟, 等. 适用于塔中区块碳酸盐岩缝洞型异常高温高压储集层的钻井液承压堵漏材料[J]. 石油勘探与开发, 2019 , 46(1): 168-175. |
[14] | 张艳娜, 孙金声, 耿东士. 杂化硅防塌剂的合成与性能评价[J]. 油田化学, 2016, 33(3): 396-400. |
[15] | 齐宁, 吴凯凯, 马磊, 等. 纳米SiO2改善纤维复合防砂体的制备及性能研究[J]. 油田化学, 2016, 33(1): 66-68. |
[16] | Zhang, J., Biao, F.J., Zhang, S.C. and Wang, X.X. (2011) A Numerical Study on Horizontal Hydraulic Fracture. Journal of Petroleum Exploration and Production Technology, 2, 7-13. https://doi.org/10.1007/s13202-011-0016-4 |
[17] | Abell, B.C., Choi, M.-K. and Shear, L.J. (2012) Specific Stiffness of Fractures and Fracture Intersections. In: The 46th US Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, 57-63. |
[18] | Brooker, D.C. and Ronalds, B.F. (2001) Prediction of Ductile Failure in Tubular Steel Members Using ABAQUS. The 11th International Offshore and Polar Engineering Conference, Stavanger, June 2001, ISOPE-I-01-347. |
[19] | 于雷, 张敬辉, 刘宝锋, 等. 微裂缝发育泥页岩地层井壁稳定技术研究与应用[J]. 石油钻探技术, 2017, 45(3): 27-31. |
[20] | 景崛嘉, 曾婷, 王江南. 聚合物纳米微球的制备及性能表征[J]. 精细石油化工进展, 2020, 21(4): 18-22. |
[21] | 董殿权, 房超. PMMA纳米微球的制备与表征[J]. 化工新型材料, 2017, 45(9): 68-70. |
[22] | 张世锋, 秦栋辉, 袁卓, 等. 抗温改性氧化石墨烯基封堵防塌剂的研制及现场应用[J]. 油田化学, 2022, 39(4): 577-582. |