|
1990~2020年大庆湿地景观格局演变分析
|
Abstract:
本研究基于遥感技术(RS)和地理信息技术(GIS)对大庆湿地1990年、2000年、2010年和2020年4期遥感影像数据进行处理,对近30年间大庆市各区、县湿地进行动态演变分析,将大庆市湿地分为河流、沼泽、滩地、湖泊、水田五大类,分析其湿地面积变化、质心变化以及各类湿地类空间自相关性。结果表明:近30年大庆市湿地面积在总体上呈现先减少再增加的趋势;湿地质心总体上呈现向西移动的态势;各类湿地在整体上呈现相关趋势且相关性显著。分析大庆市湿地存在的问题并根据大庆市湿地存在的问题,加强对湿地生态系统的保护力度;广泛宣传,加强多部门的协同合作;建立湿地补偿机制;加快推进湿地保护体系的建设;加快推进因地制宜的湿地生态修复机制;建立稳定的湿地生态监测系统提出对策建议。
Based on remote sensing technology (RS) and geographic information technology (GIS), this paper processed the remote sensing image data of Daqing wetland in 1990, 2000, 2010 and 2020, analyzed the dynamic evolution of Daqing wetland in each district and county in recent 30 years, and divided Daqing wetland into five categories: river, swamp, beach, lake and paddy field. The changes of wetland area, center of mass and spatial autocorrelation of various types of wetlands were analyzed. The results showed that the area of Daqing wetland decreased first and then increased in the last 30 years. The center of mass of the wetland generally moves westward. All kinds of wetlands showed a significant correlation trend on the whole. Analysis of the problems existing in the Daqing city wetland and according to the problems of Daqing city wetland, the wetland ecosystem in strong protection; publicity, strengthen the cooperation and establish multi-sectoral wetland compensation mechanism, accelerate the construction of wetland protection system, accelerate the wetland ecological restoration mechanism of adjust measures to local conditions, to establish stable wetland monitoring system puts forward countermeasures and suggestions.
[1] | Tilton, D.L. (1995) Integrating Wetlands into Planned Landscapes. Landscape and Urban Planning, 32, 205-209. https://doi.org/10.1016/0169-2046(95)07001-b |
[2] | Mitsch, W.J. and Gosselink, J.G. (2000) The Value of Wetlands: Importance of Scale and Landscape Setting. Ecological Economics, 35, 25-33. https://doi.org/10.1016/s0921-8009(00)00165-8 |
[3] | Pavri, F. and Aber, J.S. (2004) Characterizing Wetland Landscapes: A Spatiotemporal Analysis of Remotely Sensed Data at Cheyenne Bottoms, Kansas. Physical Geography, 25, 86-104. https://doi.org/10.2747/0272-3646.25.1.86 |
[4] | Gutzwiller, K.J. and Flather, C.H. (2011) Wetland Features and Landscape Context Predict the Risk of Wetland Habitat Loss. Ecological Applications, 21, 968-982. https://doi.org/10.1890/10-0202.1 |
[5] | Helbig, M., Chasmer, L.E., Desai, A.R., Kljun, N., Quinton, W.L. and Sonnentag, O. (2017) Direct and Indirect Climate Change Effects on Carbon Dioxide Fluxes in a Thawing Boreal Forest-Wetland Landscape. Global Change Biology, 23, 3231-3248. https://doi.org/10.1111/gcb.13638 |
[6] | 周林飞, 徐浩田, 张静. 凌河口湿地自然保护区景观格局变化及功能区划分[J]. 湿地科学, 2016, 14(3): 403-407. |
[7] | 卢晓宁, 张静怡, 洪佳, 王玲玲. 基于遥感影像的黄河三角洲湿地景观演变及驱动因素分析[J]. 农业工程学报, 2016, 32(S1): 214-223. |
[8] | 曾光, 高会军, 朱刚. 近40年来山西省湿地景观格局变化分析[J]. 干旱区资源与环境, 2018, 32(1): 103-108. |
[9] | 谭志强, 许秀丽, 李云良, 张奇. 长江中游大型通江湖泊湿地景观格局演变特征[J]. 长江流域资源与环境, 2017, 26(10): 1619-1629. |
[10] | 高文杰, 潘继亚. 大庆湿地时空变化分析[J]. 吉林水利, 2015(2): 12-17. |